Background: Inflammasome-induced neuroinflammation is a major pathogenic mechanism underlying the degeneration of nigral dopaminergic neurons in Parkinson's disease (PD). Baicalein is a flavonoid isolated from the traditional Chinese medicinal herbal Scutellaria baicalensis Georgi with known anti-inflammatory and neuroprotective efficacy in models of neurodegenerative diseases, including PD. However, its effects on inflammasome-induced neuroinflammation during PD remain unclear.
Methods: We used N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD-like pathology in mice. Behavioral assessments including the pole test, rotarod test and open filed test were conducted to evaluate the effects of baicalein on MPTP-induced motor dysfunction. The efficacies of baicalein against MPTP-induced dopaminergic neuron loss and glial cell activation in the substantia nigra compact (SNc) were examined by immunohistochemistry, effects on proinflammatory cytokines by qPCR and enzyme-linked immunosorbent assay (ELISA), effects on inflammasome pathway activation by immunoblotting and flow cytometry.
Results: Administration of baicalein reversed MPTP-induced motor dysfunction, loss of dopaminergic neurons, and pro-inflammatory cytokine elevation. Baicalein also inhibited NLRP3 and caspase-1 activation and suppressed gasdermin D (GSDMD)-dependent pyroptosis. Additionally, baicalein inhibited the activation and proliferation of disease-associated proinflammatory microglia.
Conclusions: These findings suggest that baicalein can reverse MPTP-induced neuroinflammation in mice by suppressing NLRP3/caspase-1/GSDMD pathway. Our study provides potential insight of baicalein in PD therapy.
Keywords: Baicalein; GSDMD; NLRP3; Neuroinflammation; Parkinson's disease.
© The Author(s) 2020. Published by Oxford University Press on behalf of CINP.