Reducing the Nitrate Content in Vegetables Through Joint Regulation of Short-Distance Distribution and Long-Distance Transport

Front Plant Sci. 2020 Jul 16:11:1079. doi: 10.3389/fpls.2020.01079. eCollection 2020.

Abstract

As an important nitrogen source, nitrate (NO3 -) absorbed by plants is carried throughout the plant via short-distance distribution (cytoplasm to vacuole) and long-distance transportation (root to shoot), the two pathways that jointly regulate the content of NO3 - in plants. NO3 - accumulation within the vacuole depends on the activities of both tonoplast proton pumps and chloride channel (CLC) proteins, and less NO3 - is stored in vacuoles when the activities of these proteins are reduced. The ratio of the distribution of NO3 - in the cytoplasm and vacuole affects the long-distance transport of NO3 -, which is regulated by the proteins NPF7.3 and NPF7.2 that play opposite but complementary roles. NPF7.3 is responsible for loading NO3 - from the root cytoplasm into the xylem, whereas NPF7.2 regulates the unloading of NO3 - from the xylem, thereby facilitating the long-distance transport of NO3 - through the roots to the shoots. Vegetables, valued for their nutrient content, are consumed in large quantities; however, a high content of NO3 - can detrimentally affect the quality of these plants. NO3 - that is not assimilated and utilized in plant tissues is converted via enzyme-catalyzed reactions to nitrite (NO2 -), which is toxic to plants and harmful to human health. In this review, we describe the mechanisms underlying NO3 - distribution and transport in plants, a knowledge of which will contribute to breeding leafy vegetables with lower NO3 - contents and thus be of considerable significance from the perspectives of environmental protection and food safety.

Keywords: NPF7.2; NPF7.3; chloride channel protein; health; nitrate; proton pumps; vegetable.

Publication types

  • Review