Biochemical and cellular mechanisms of low-dose effects

Int J Radiat Biol Relat Stud Phys Chem Med. 1988 Jan;53(1):23-37. doi: 10.1080/09553008814550391.

Abstract

Low-dose irradiation is usually considered to be rather ineffective in producing biologically relevant effects. Yet, individual radiation absorption events within cell nuclei or whole cells interact stochastically with subcellular structures due to the multiple ionizations along primary or secondary particle tracks, depending on ionization density. Whereas radiation effects are usually seen in the context of structure and function of DNA, other cellular effects, perhaps influencing DNA by secondary biochemical mechanisms, also warrant attention. Thus, previous work from this laboratory with bone marrow that was obtained from whole-body exposed mice, has shown that single or few instantaneous radiation absorption events per cell from gamma-rays produce an acute and temporary partial inhibition of the enzyme thymidine kinase; the effect appears within about 1 h after the event, reaches its maximum at approximately 4 h and disappears completely within another 6 h. This pattern of enzyme inhibition is fully concordant with the pattern of inhibition of uptake of tritiated thymidine or 125I-labelled deoxyuridine into the DNA; also concordant is a temporary increase in the concentration of free thymidine in the blood serum of the exposed mice. The particular response of thymidine kinase was considered to relate to some, thus far unknown, repair systems and/or to a defence mechanism of the hit cells. In order to further elucidate the role of the acute and temporary partial inhibition of thymidine kinase in cellular metabolism, experiments were carried out in which mice were acutely exposed to 0.01 or 0.1 Gy and again exposed to the same dose at different times up to 12 h after the first exposure. At regular time intervals after the second exposure bone marrow cells were obtained and thymidine kinase activity was studied by various assays. The results indicate that the first acute irradiation conditioned the cells in such a way that the second acute irradiation produced either an enhanced inhibition and recovery of thymidine kinase activity, or no effect at all was seen, when the second irradiation was given between about 3 and 8 h after the first irradiation. From 8 to 12 h after the first irradiation the cells apparently resumed their original state, so that the second irradiation produced effects quite similar to those seen after a single irradiation in unconditioned cells.(ABSTRACT TRUNCATED AT 400 WORDS)

MeSH terms

  • Animals
  • Cells / metabolism
  • Cells / radiation effects*
  • DNA / radiation effects*
  • DNA Damage*
  • DNA Replication / radiation effects
  • Dose-Response Relationship, Radiation
  • Female
  • Mice
  • Radiation Dosage*
  • Thymidine Kinase / metabolism
  • Whole-Body Irradiation

Substances

  • DNA
  • Thymidine Kinase