In vitro fretting crevice corrosion damage of CoCrMo alloys in phosphate buffered saline: Debris generation, chemistry and distribution

Acta Biomater. 2020 Sep 15:114:449-459. doi: 10.1016/j.actbio.2020.07.052. Epub 2020 Aug 6.

Abstract

Fretting crevice corrosion in modular tapers of total hip replacements has become a major concern in orthopedic medical devices. Solid and ionic debris arising from fretting crevice corrosion have been implicated in device failure and revision surgery. This study aims to use a 2D pin-on-disk fretting corrosion test system to visualize damage progression and debris generation during fretting corrosion of CoCrMo alloys in phosphate buffered saline (PBS). The results provide direct evidence of rapid debris generation during fretting corrosion (after only 12 min of testing). Debris was generated and either extruded from the contact region or impacted into adjacent crevice sites as long as fretting continued. After testing, the fretting region consisted of a damaged and plastically deformed contact region surrounded by a halo of fretting debris consisting entirely of oxides and phosphates within the crevice region. Evidence of pitting corrosion and grain boundary corrosion was observed. Solid debris consisted of chromium (Cr), phosphate (P) and oxygen (O). X-ray photoelectron spectroscopy analysis of the near-fretted metal surface area showed a thicker oxygen (O1s) containing film with the depth profile of O1s above 10% penetrating up to 5.75 nm while the O1s concentration on the unfretted area fell to below 10% after 1 nm depth. Ion concentration in the PBS, measured using inductively coupled mass spectrometry, showed cobalt (Co) ions were most prevalent (1.46 ppm) compared to chromium (Cr) (0.07 ppm) and molybdenum (Mo) (0.05 ppm) (p <0.05). All of these results are consistent with the analysis of in vivo modular taper corrosion processes. STATEMENT OF SIGNIFICANCE: CoCrMo alloys has been widely used as a metallic biomaterial for implant devices and can lose their durability and reliability due to wear, corrosion and tribocorrosion. Debris, as one of the major products of these reactions, is associated with implant device failure. In the first time, we developed a fretting corrosion testing system to visualize the debris generation process in real-time between CoCrMo alloy pin and disk samples. Debris was generated rapidly during fretting corrosion and some of the debris egressed from the crevice site while also accumulating within the crevice area as fretting continued. Our study opens a new method for future studies to advance understanding of debris generation processes during wear and tribocorrosion phenomenon.

Keywords: CoCrMo alloys; Debris; Fretting corrosion; Metallic biomaterials; Visualization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alloys
  • Arthroplasty, Replacement, Hip*
  • Chromium Alloys
  • Corrosion
  • Hip Prosthesis*
  • Humans
  • Phosphates
  • Prosthesis Design
  • Prosthesis Failure
  • Reproducibility of Results

Substances

  • Alloys
  • Chromium Alloys
  • Phosphates