Anthocyanins Isolated from Vitis coignetiae Pulliat Enhances Cisplatin Sensitivity in MCF-7 Human Breast Cancer Cells through Inhibition of Akt and NF-κB Activation

Molecules. 2020 Aug 9;25(16):3623. doi: 10.3390/molecules25163623.

Abstract

Anthocyanins isolated from Vitis coignetiae Pulliat (Meoru in Korea) (AIMs) have various anti-cancer properties by inhibiting Akt and NF-κB which are involved in drug resistance. Cisplatin (CDDP) is one of the popular anti-cancer agents. Studies reported that MCF-7 human breast cancer cells have high resistance to CDDP compared to other breast cancer cell lines. In this study, we confirmed CDDP resistance of MCF-7 cells and tested whether AIMs can overcome CDDP resistance of MCF-7 cells. Cell viability assay revealed that MCF-7 cells were more resistant to CDDP treatment than MDA-MB-231 breast cancer cells exhibiting aggressive and high cancer stem cell phenotype. AIMs significantly augmented the efficacy of CDDP with synergistic effects on MCF-7 cells. Molecularly, Western blot analysis revealed that CDDP strongly increased Akt and moderately reduced p-NF-κB and p-IκB and that AIMs inhibited CDDP-induced Akt activation, and augmented CDDP-induced reduction of p-NF-κB and p-IκB in MCF-7 cells. In addition, AIMs significantly downregulated an anti-apoptotic protein, XIAP, and augmented PARP-1 cleavage in CDDP-treated MCF-7 cells. Moreover, under TNF-α treatment, AIMs augmented CDDP efficacy with inhibition of NF-κB activation on MCF-7 cells. In conclusion, AIMs enhanced CDDP sensitivity by inhibiting Akt and NF-κB activity of MCF-7 cells that show relative intrinsic CDDP resistance.

Keywords: AIMs; CDDP; cisplatin resistance; meoru; phytochemicals; synergistic effects.

MeSH terms

  • Anthocyanins / pharmacology*
  • Antineoplastic Agents / pharmacology
  • Apoptosis
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Cycle
  • Cell Movement
  • Cell Proliferation
  • Cisplatin / pharmacology*
  • Drug Resistance, Neoplasm*
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • NF-kappa B / genetics
  • NF-kappa B / metabolism*
  • Plant Extracts / pharmacology*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Tumor Cells, Cultured
  • Vitis / chemistry*

Substances

  • Anthocyanins
  • Antineoplastic Agents
  • NF-kappa B
  • Plant Extracts
  • Proto-Oncogene Proteins c-akt
  • Cisplatin