Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion-Jacobson Perovskites Boost the Performance of Solar Cells

J Am Chem Soc. 2020 Sep 2;142(35):15049-15057. doi: 10.1021/jacs.0c06288. Epub 2020 Aug 24.


The advent of the two-dimensional (2D) family of halide perovskites and their demonstration in 2D/three-dimensional (3D) hierarchical film structures broke new ground toward high device performance and good stability. The 2D Dion-Jacobson (DJ) phase halide perovskites are especially attractive in solar cells because of their superior charge transport properties. Here, we report on 2D DJ phase perovskites using a 3-(aminomethyl)piperidinium (3AMP) organic spacer for the fabrication of mixed Pb/Sn-based perovskites, exhibiting a narrow bandgap of 1.27 eV and a long carrier lifetime of 657.7 ns. Consequently, solar cells employing mixed 2D DJ 3AMP-based and 3D MA0.5FA0.5Pb0.5Sn0.5I3 (MA = methylammonium, FA = formamidinium) perovskite composites as light absorbers achieve enhanced efficiency and stability, giving a power conversion efficiency of 20.09% with a high open-circuit voltage of 0.88 V, a fill factor of 79.74%, and a short-circuit current density of 28.63 mA cm-2. The results provide an effective strategy to improve the performance of single-junction narrow-bandgap solar cells and, potentially, to give a highly efficient alternative to bottom solar cells in tandem devices.