DiMSum: an error model and pipeline for analyzing deep mutational scanning data and diagnosing common experimental pathologies
- PMID: 32799905
- PMCID: PMC7429474
- DOI: 10.1186/s13059-020-02091-3
DiMSum: an error model and pipeline for analyzing deep mutational scanning data and diagnosing common experimental pathologies
Abstract
Deep mutational scanning (DMS) enables multiplexed measurement of the effects of thousands of variants of proteins, RNAs, and regulatory elements. Here, we present a customizable pipeline, DiMSum, that represents an end-to-end solution for obtaining variant fitness and error estimates from raw sequencing data. A key innovation of DiMSum is the use of an interpretable error model that captures the main sources of variability arising in DMS workflows, outperforming previous methods. DiMSum is available as an R/Bioconda package and provides summary reports to help researchers diagnose common DMS pathologies and take remedial steps in their analyses.
Keywords: Bioconda; Bioinformatic pipeline; Deep mutational scanning; R package; Statistical model; Variant effect prediction.
Conflict of interest statement
The authors declare that they have no competing interests.
Figures
Similar articles
-
Software for the analysis and visualization of deep mutational scanning data.BMC Bioinformatics. 2015 May 20;16:168. doi: 10.1186/s12859-015-0590-4. BMC Bioinformatics. 2015. PMID: 25990960 Free PMC article.
-
Deep Mutational Scanning: Calculating Enrichment Scores for Protein Variants from DNA Sequencing Output Files.Cold Spring Harb Protoc. 2015 Aug 3;2015(8):781-3. doi: 10.1101/pdb.prot085233. Cold Spring Harb Protoc. 2015. PMID: 26240406
-
popDMS infers mutation effects from deep mutational scanning data.Bioinformatics. 2024 Aug 2;40(8):btae499. doi: 10.1093/bioinformatics/btae499. Bioinformatics. 2024. PMID: 39115383 Free PMC article.
-
Rational Protein Engineering Guided by Deep Mutational Scanning.Int J Mol Sci. 2015 Sep 23;16(9):23094-110. doi: 10.3390/ijms160923094. Int J Mol Sci. 2015. PMID: 26404267 Free PMC article. Review.
-
Best practices for variant calling in clinical sequencing.Genome Med. 2020 Oct 26;12(1):91. doi: 10.1186/s13073-020-00791-w. Genome Med. 2020. PMID: 33106175 Free PMC article. Review.
Cited by
-
Deep mutational scanning of proteins in mammalian cells.Cell Rep Methods. 2023 Nov 20;3(11):100641. doi: 10.1016/j.crmeth.2023.100641. Epub 2023 Nov 13. Cell Rep Methods. 2023. PMID: 37963462 Free PMC article. Review.
-
Massive experimental quantification of amyloid nucleation allows interpretable deep learning of protein aggregation.bioRxiv [Preprint]. 2024 Oct 1:2024.07.13.603366. doi: 10.1101/2024.07.13.603366. bioRxiv. 2024. PMID: 39071305 Free PMC article. Preprint.
-
Deep mutational scanning: A versatile tool in systematically mapping genotypes to phenotypes.Front Genet. 2023 Jan 12;14:1087267. doi: 10.3389/fgene.2023.1087267. eCollection 2023. Front Genet. 2023. PMID: 36713072 Free PMC article. Review.
-
Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins.Nat Chem. 2024 Jul;16(7):1200-1208. doi: 10.1038/s41557-024-01490-4. Epub 2024 May 3. Nat Chem. 2024. PMID: 38702405 Free PMC article.
-
Linking genome variants to disease: scalable approaches to test the functional impact of human mutations.Hum Mol Genet. 2021 Oct 1;30(R2):R187-R197. doi: 10.1093/hmg/ddab219. Hum Mol Genet. 2021. PMID: 34338757 Free PMC article. Review.
References
-
- Kinney JB, McCandlish DM. Massively parallel assays and quantitative sequence–function relationships. Annual Review of Genomics and Human Genetics. 2019. p. 99–127. - PubMed
-
- Domingo J, Baeza-Centurion P, Lehner B. The causes and consequences of genetic interactions (epistasis) Annu Rev Genomics Hum Genet. 2019;20:433–460. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
