Light and competition alter leaf stoichiometry of introduced species and native mangrove species

Sci Total Environ. 2020 Oct 10:738:140301. doi: 10.1016/j.scitotenv.2020.140301. Epub 2020 Jun 17.

Abstract

Ecological stoichiometry is the study of the balance of ecosystem energy and nutrient cycling, especially carbon (C), nitrogen (N), and phosphorus (P). C, N, and P are the key elements for plant growth and metabolism. Systematic research on leaf stoichiometry in mangrove forest ecosystems is still lacking. To understand the leaf stoichiometry of introduced species and native species in mangrove forests, we selected four species (one introduced species, Sonneratia apetala, and three native species, Avicennia marina, Aegiceras corniculatum, and Kandelia obovate) and measured leaf C, N, and P contents under different light conditions. The results showed that there were significant negative scaling relationships of leaf C versus N and C versus P but positive scaling relationships of leaf N versus P in the four mangrove species. Light and competition had significant effects on leaf stoichiometry, especially under the full light condition. S. apetala influenced leaf elements in a mixture with native species. Interspecific competition reduced leaf N and P contents in A. corniculatum and K. obovate but increased leaf N and P contents in A. marina. Leaf N and P contents of the four species showed similar responses to both intraspecific and interspecific competition. The ratio of leaf C:N:P (108:11:1) in the mangrove forests was lower than that in other ecosystems, and species with a higher growth rate had a higher leaf P content and lower N:P ratio, supporting the growth rate hypothesis. Leaf N:P was 11.04, indicating that there was N limitation in the mangrove forests. This systematic research of leaf stoichiometry of mangrove forests improves our understanding of mangrove growth and nutrient use strategies in response to different environmental stresses.

Keywords: Interspecific competition; Intraspecific competition; Leaf stoichiometry; Light condition; Sonneratia apetala.

MeSH terms

  • Avicennia*
  • Ecosystem
  • Introduced Species
  • Plant Leaves
  • Rhizophoraceae*