Thresholds for ecological responses to global change do not emerge from empirical data

Nat Ecol Evol. 2020 Nov;4(11):1502-1509. doi: 10.1038/s41559-020-1256-9. Epub 2020 Aug 17.

Abstract

To understand ecosystem responses to anthropogenic global change, a prevailing framework is the definition of threshold levels of pressure, above which response magnitudes and their variances increase disproportionately. However, we lack systematic quantitative evidence as to whether empirical data allow definition of such thresholds. Here, we summarize 36 meta-analyses measuring more than 4,600 global change impacts on natural communities. We find that threshold transgressions were rarely detectable, either within or across meta-analyses. Instead, ecological responses were characterized mostly by progressively increasing magnitude and variance when pressure increased. Sensitivity analyses with modelled data revealed that minor variances in the response are sufficient to preclude the detection of thresholds from data, even if they are present. The simulations reinforced our contention that global change biology needs to abandon the general expectation that system properties allow defining thresholds as a way to manage nature under global change. Rather, highly variable responses, even under weak pressures, suggest that 'safe-operating spaces' are unlikely to be quantifiable.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Climate Change*
  • Ecosystem*
  • Meta-Analysis as Topic