Perinatal Nicotine Reduces Chemosensitivity of Medullary 5-HT Neurons after Maturation in Culture

Neuroscience. 2020 Oct 15:446:80-93. doi: 10.1016/j.neuroscience.2020.08.012. Epub 2020 Aug 17.

Abstract

Perinatal exposure to nicotine produces ventilatory and chemoreflex deficits in neonatal mammals. Medullary 5-HT neurons are putative central chemoreceptors that innervate respiratory nuclei and promote ventilation, receive cholinergic input and express nicotinic acetylcholine receptors (nAChRs). Perforated patch clamp recordings were made from cultured 5-HT neurons dissociated from the medullary raphé of 0-3 day old mice expressing enhanced yellow fluorescent protein driven by the enhancer region for PET1 (ePet-EYFP). The effect of exposure to low (6 mg kg-1day-1) or high (60 mg kg-1day-1) doses of nicotine in utero (prenatal), in culture (postnatal), or both and the effect of acute nicotine exposure (10 μM), were examined on baseline firing rate (FR at 5% CO2, pH = 7.4) and the change in FR with acidosis (9% CO2, pH 7.2) in young (12-21 days in vitro, DIV) and older (≥22 DIV) acidosis stimulated 5-HT neurons. Nicotine exposed neurons exhibited ∼67% of the response to acidosis recorded in neurons given vehicle (p = 0.005), with older neurons exposed to high dose prenatal and postnatal nicotine, exhibiting only 28% of that recorded in the vehicle neurons (p < 0.01). In neurons exposed to low or high dose prenatal and postnatal nicotine, acute nicotine exposure led to a smaller increase in FR (∼+51% vs +168%, p = 0.026) and response to acidosis (+6% vs +67%, p = 0.014) compared to vehicle. These data show that exposure to nicotine during development reduces chemosensitivity of 5-HT neurons as they mature, an effect that may be related to the abnormal chemoreflexes reported in rodents exposed to nicotine in utero, and may cause a greater risk for sudden infant death syndrome (SIDS).

Keywords: acidosis; culture; nicotine; patch clamp; serotonin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Female
  • Medulla Oblongata
  • Mice
  • Neurons
  • Nicotine* / toxicity
  • Pregnancy
  • Raphe Nuclei
  • Serotonin*

Substances

  • Serotonin
  • Nicotine