Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020;145(10):623-632.
doi: 10.1159/000508033. Epub 2020 Aug 20.

A Novel Gain-of-Function KCND3 Variant Associated with Brugada Syndrome

Affiliations

A Novel Gain-of-Function KCND3 Variant Associated with Brugada Syndrome

Xianqing Li et al. Cardiology. 2020.

Abstract

Brugada syndrome (BrS) is a known cause of sudden cardiac death (SCD) characterized by abnormal electrocardiograms and fatal arrhythmias. The variants in KCND3 encoding the KV4.3 potassium-channel (the α-subunit of the Ito) have seldom been reported in BrS. This study aimed to identify novel KCND3 variants associated with BrS and elucidate BrS pathogenesis. High-depth targeted sequencing was performed and the electrophysiological properties of the variants were detected by whole-cell patch-clamp methods in a cultured-cell expressing system. The transcriptional levels of KV4.3 in different genotypes were studied by real-time PCR. Western blot was used to assess channel protein expression. A novel KCND3heterozygous variant, c.1292G>A (Arg431His, R431H), was found in the proband. Whole-cell patch-clamp results revealed a gain-of-function phenotype in the variant, with peak Ito current density increased and faster recovery from inactivation. The expression of mutant Kv4.3 membrane protein increased and the cytoplasmic protein decreased, demonstrating that the membrane/cytoplasm ratio was significantly different. In conclusion, a novel KCND3 heterozygous variant was associated with BrS. The increased Ito current explained the critical role of KCND3 in the pathogenesis of BrS. Genetic screening for KCND3 could be useful for understanding the pathogenesis of BrS and providing effective risk stratification in the clinic.

Keywords: Brugada syndrome; KCND3; KV4.3 channels; Next-generation sequencing; Sudden cardiac death.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources