Synergistic effect of microwave heating and hydrothermal methods on synthesized Ni2CoS4/GO for ultrahigh capacity supercapacitors

J Colloid Interface Sci. 2021 Jan 15;582(Pt A):312-321. doi: 10.1016/j.jcis.2020.08.042. Epub 2020 Aug 14.

Abstract

A simple and efficient strategy that takes advantages of the synergistic effect of microwave heating method and hydrothermal method is used to synthesize Ni2CoS4/graphene oxide (MH-Ni2CoS4/GO). Firstly, Ni2CoS4 nanoparticles are observed to grow uniformly on the surface of GO. Then the obtained MH-Ni2CoS4/GO electrode is tested and it demonstrates ultrahigh specific capacitance of 2675.0 F g-1 at the current densities of 2 A g-1, fantastic stability of 95.0% even after 2000 cycles at 30 A g-1 and excellent rate capability of 89.7% with current density increasing from 2 A g-1 to 30 A g-1. Moreover, the assembled AC//MH-Ni2CoS4/GO asymmetric supercapacitor also delivers a good specific capacitance of 126.5 F g-1 at 0.5 A g-1, outstanding stability of 97.0% after 2000 cycles at 5.0 A g-1, and an ultrahigh energy density of 59.6 Wh kg-1 at power density of 497.6 W kg-1. This work provides an approach to synthesize electrode materials with superior excellent performances and it can be easily scaled up for practical applications in supercapacitors.

Keywords: Graphene oxide; Microwave heating-hydrothermal method; Ni(2)CoS(4)/GO; Supercapacitors.