Fabrication of metal incorporated polymer composite: An excellent antibacterial agent

J Mol Struct. 2021 Feb 5:1225:129091. doi: 10.1016/j.molstruc.2020.129091. Epub 2020 Aug 14.

Abstract

US Food and Drug Administration (FDA) allowed for direct addition of castor oil for human consumption as food and most recently FDA approved castor oil as over-the-counter (OTC) for laxative drug. The present article highlights the green route phosphorylation of castor oil (COL) via condensation polymerization. Further, the incorporation of metal ions Cu (II)) and Zn (II) into the polymer matrix have been carried out at elevated temperature using catalyst p-toluene sulphonic acid (PTSA). The modification of the said material has been confirmed by FT-IR, UV-VIS, and 1H and 31P-NMR spectroscopy. Further, the in vitro antibacterial activities of the metal incorporated-COL has been performed by standard methods against B. cereus (MCC2243) (gram-positive) and E. coli (MCC2412) (gram-negative) bacteria. The results revealed that the incorporation of metal ions into the polymer matrix increases the antibacterial activity largely. This may be governed by the electrostatic interaction between metal ions and microbes, also the generation of free active oxygen hinders the normal activity of bacteria. These results suggest that the synthesized material may act a potential candidate for low cost, environment friendly antibacterial agents and may find their application in clinical fields. Herein we are also proposing mechanism of antibacterial activity.

Keywords: Antibacterial; Cu (II) & Zn (II); FDA; Metal incorporated-COL; Phosphorylation; Polymers.