Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin

PLoS Pathog. 2020 Aug 27;16(8):e1008816. doi: 10.1371/journal.ppat.1008816. eCollection 2020 Aug.

Abstract

Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics. Most pandemics occurred upon adaptation of avian IAVs to humans. This adaptation includes a hallmark receptor-binding specificity switch of hemagglutinin (HA) from avian-type α2,3- to human-type α2,6-linked sialic acids. Complementary changes of the receptor-destroying neuraminidase (NA) are considered to restore the precarious, but poorly described, HA-NA-receptor balance required for virus fitness. In comparison to the detailed functional description of adaptive mutations in HA, little is known about the functional consequences of mutations in NA in relation to their effect on the HA-NA balance and host tropism. An understudied feature of NA is the presence of a second sialic acid-binding site (2SBS) in avian IAVs and absence of a 2SBS in human IAVs, which affects NA catalytic activity. Here we demonstrate that mutation of the 2SBS of avian IAV H5N1 disturbs the HA-NA balance. Passaging of a 2SBS-negative H5N1 virus on MDCK cells selected for progeny with a restored HA-NA balance. These viruses obtained mutations in NA that restored a functional 2SBS and/or in HA that reduced binding of avian-type receptors. Importantly, a particular HA mutation also resulted in increased binding of human-type receptors. Phylogenetic analyses of avian IAVs show that also in the field, mutations in the 2SBS precede mutations in HA that reduce binding of avian-type receptors and increase binding of human-type receptors. Thus, 2SBS mutations in NA can drive acquisition of mutations in HA that not only restore the HA-NA balance, but may also confer increased zoonotic potential.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Substitution
  • Animals
  • Binding Sites
  • Dogs
  • Hemagglutinin Glycoproteins, Influenza Virus / chemistry
  • Hemagglutinin Glycoproteins, Influenza Virus / genetics*
  • Hemagglutinin Glycoproteins, Influenza Virus / metabolism
  • Influenza A virus / genetics*
  • Influenza A virus / isolation & purification
  • Madin Darby Canine Kidney Cells
  • Mutation*
  • Neuraminidase / chemistry
  • Neuraminidase / genetics*
  • Neuraminidase / metabolism
  • Orthomyxoviridae Infections / genetics
  • Orthomyxoviridae Infections / pathology
  • Orthomyxoviridae Infections / virology*
  • Protein Binding
  • Sialic Acids / metabolism*
  • Virus Replication*

Substances

  • Hemagglutinin Glycoproteins, Influenza Virus
  • Sialic Acids
  • Neuraminidase

Grants and funding

W.D. was supported by a personal grant from the Chinese Scholarship Council (file number 201603250057). C.A.M.d.H. was supported by the Mizutani Foundation for Glycoscience. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.