Acute Effects of Winter Sports and Indoor Cycling on Arterial Stiffness

J Sports Sci Med. 2020 Aug 13;19(3):460-468. eCollection 2020 Sep.


Sedentary lifestyle predisposes to endothelial dysfunction, increased arterial stiffness and cardiovascular diseases, all of which can be positively modified by regular physical exercise training. A decrease in physical activity during winter months coincides with higher rates of cardiovascular events. In order to identify winter sports suitable to overcome this seasonal exercise deficit and thus contribute to cardiovascular health, it was the aim of this study to compare immediate effects of cross-country skiing (XCS) and alpine skiing (AS) on arterial stiffness as an alternative to indoor cycling (IC). After baseline assessment, eighteen healthy subjects performed one session of XCS, AS, and IC in randomized order. Pulse wave analysis was conducted (Mobil-o-Graph®) before and 10-min after exercise. Parameters of arterial stiffness and wave reflection were reduced after XCS and IC, but not after AS: central systolic blood pressure (IC: -8.0 ± 5.4 mmHg; p < 0.001), amplitude of the backward pressure wave (IC: -1.4 ± 2.7 mmHg; p < 0.05), reflection coefficient (XCS: -6.0 ± 7.8%; IC: -5.7 ± 8.1%; both p < 0.1), and pulse wave velocity (IC by -0.19 ± 0.27 m/s; p < 0.01). Higher exercise intensities correlated with greater reductions of arterial stiffness (all p < 0.05). Single sessions of XCS, IC but not AS led to comparable improvement in arterial stiffness, which was even more pronounced during higher exercise intensities. With regard to arterial stiffness, IC and XCS emerge as more effective to counteract the winter exercise deficit and thus the deleterious cardiovascular effects of a sedentary lifestyle.

Keywords: Alpine skiing; cross-country skiing; cycling; exercise intensity; physical activity; pulse wave analysis.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Bicycling / physiology*
  • Blood Pressure
  • Energy Metabolism
  • Female
  • Heart Rate
  • Humans
  • Male
  • Middle Aged
  • Oxygen Consumption
  • Pulse Wave Analysis
  • Risk Factors
  • Sedentary Behavior
  • Skiing / physiology*
  • Vascular Stiffness*