The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice
- PMID: 32882403
- PMCID: PMC7779788
- DOI: 10.1016/j.jcmgh.2020.08.011
The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice
Abstract
Background & aims: Pancreatic ductal adenocarcinoma (PDA) initiation and progression are accompanied by an immunosuppressive inflammatory response. Here, we evaluated the immunomodulatory role of chemosensory signaling in metaplastic tuft cells (MTCs) by analyzing the role of GNAT3, a gustatory pathway G-protein expressed by MTCs, during PDA progression.
Methods: Gnat3-null (Gnat3-/-) mice were crossbred with animals harboring a Cre-inducible KrasLSL-G12D/+ allele with either Ptf1aCre/+ (KC) or tamoxifen-inducible Ptf1aCreERT/+ (KCERT) mice to drive oncogenic KRAS expression in the pancreas. Ex vivo organoid conditioned medium generated from KC and Gnat3-/-;KC acinar cells was analyzed for cytokine secretion. Experimental pancreatitis was induced in KCERT and Gnat3-/-;KCERT mice to accelerate tumorigenesis, followed by analysis using mass cytometry and single-cell RNA sequencing. To study PDA progression, KC and Gnat3-/-;KC mice were aged to morbidity or 52 weeks.
Results: Ablation of Gnat3 in KC organoids increased release of tumor-promoting cytokines in conditioned media, including CXCL1 and CXCL2. Analysis of Gnat3-/-;KCERT pancreata found altered expression of immunomodulatory genes in Cxcr2 expressing myeloid-derived suppressor cells (MDSCs) and an increased number of granulocytic MDSCs, a subset of tumor promoting MDSCs. Importantly, expression levels of CXCL1 and CXCL2, known ligands for CXCR2, were also elevated in Gnat3-/-;KCERT pancreata. Consistent with the tumor-promoting role of MDSCs, aged Gnat3-/-;KC mice progressed more rapidly to metastatic carcinoma compared with KC controls.
Conclusions: Compromised gustatory sensing, achieved by Gnat3 ablation, enhanced the CXCL1/2-CXCR2 axis to alter the MDSC population and promoted the progression of metastatic PDA.
Keywords: CXCL1; CXCL2; MDSC; Tuft Cell.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Figures
Comment in
-
Repurposing Tuft Cells to Suppress Pancreatic Cancer.Cell Mol Gastroenterol Hepatol. 2021;11(2):659-660. doi: 10.1016/j.jcmgh.2020.09.009. Epub 2020 Oct 10. Cell Mol Gastroenterol Hepatol. 2021. PMID: 33049247 Free PMC article. No abstract available.
Similar articles
-
Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice.Gastroenterology. 2018 Apr;154(5):1494-1508.e13. doi: 10.1053/j.gastro.2017.12.005. Epub 2017 Dec 15. Gastroenterology. 2018. PMID: 29248441 Free PMC article.
-
Tuft Cells Inhibit Pancreatic Tumorigenesis in Mice by Producing Prostaglandin D2.Gastroenterology. 2020 Nov;159(5):1866-1881.e8. doi: 10.1053/j.gastro.2020.07.037. Epub 2020 Jul 24. Gastroenterology. 2020. PMID: 32717220 Free PMC article.
-
Identification and manipulation of biliary metaplasia in pancreatic tumors.Gastroenterology. 2014 Jan;146(1):233-44.e5. doi: 10.1053/j.gastro.2013.08.053. Epub 2013 Aug 30. Gastroenterology. 2014. PMID: 23999170 Free PMC article.
-
Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.Gastroenterology. 2016 Jan;150(1):218-228.e12. doi: 10.1053/j.gastro.2015.09.013. Epub 2015 Sep 25. Gastroenterology. 2016. PMID: 26408346 Free PMC article.
-
Loss of Pancreatic E-Cadherin Causes Pancreatitis-Like Changes and Contributes to Carcinogenesis.Cell Mol Gastroenterol Hepatol. 2020;9(1):105-119. doi: 10.1016/j.jcmgh.2019.09.001. Epub 2019 Sep 14. Cell Mol Gastroenterol Hepatol. 2020. PMID: 31526907 Free PMC article.
Cited by
-
Tuft cells transdifferentiate to neural-like progenitor cells in the progression of pancreatic cancer.bioRxiv [Preprint]. 2024 Apr 23:2024.02.12.579982. doi: 10.1101/2024.02.12.579982. bioRxiv. 2024. Update in: Dev Cell. 2024 Dec 19:S1534-5807(24)00725-1. doi: 10.1016/j.devcel.2024.12.003 PMID: 38405804 Free PMC article. Updated. Preprint.
-
Dynamic tuft cell expansion during gastric metaplasia and dysplasia.J Pathol Clin Res. 2024 Jan;10(1):e352. doi: 10.1002/cjp2.352. Epub 2023 Dec 20. J Pathol Clin Res. 2024. PMID: 38117182 Free PMC article.
-
The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers.Cells. 2023 May 17;12(10):1406. doi: 10.3390/cells12101406. Cells. 2023. PMID: 37408240 Free PMC article. Review.
-
Repurposing Tuft Cells to Suppress Pancreatic Cancer.Cell Mol Gastroenterol Hepatol. 2021;11(2):659-660. doi: 10.1016/j.jcmgh.2020.09.009. Epub 2020 Oct 10. Cell Mol Gastroenterol Hepatol. 2021. PMID: 33049247 Free PMC article. No abstract available.
-
The critical roles and therapeutic implications of tuft cells in cancer.Front Pharmacol. 2022 Dec 9;13:1047188. doi: 10.3389/fphar.2022.1047188. eCollection 2022. Front Pharmacol. 2022. PMID: 36569325 Free PMC article. Review.
References
-
- Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–2921. - PubMed
-
- Werner J., Combs S.E., Springfeld C., Hartwig W., Hackert T., Buchler M.W. Advanced-stage pancreatic cancer: therapy options. Nat Rev Clin Oncol. 2013;10:323–333. - PubMed
-
- Ansari D., Tingstedt B., Andersson B., Holmquist F., Sturesson C., Williamsson C., Sasor A., Borg D., Bauden M., Andersson R. Pancreatic cancer: yesterday, today and tomorrow. Future Oncol. 2016;12:1929–1946. - PubMed
-
- Bockman D.E., Boydston W.R., Anderson M.C. Origin of tubular complexes in human chronic pancreatitis. Am J Surg. 1982;144:243–249. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous
