A comparative study of two analytical techniques for the simultaneous determination of amprolium HCl and ethopabate from combined dosage form and in presence of their alkaline degradation

Spectrochim Acta A Mol Biomol Spectrosc. 2020 Dec 15:243:118756. doi: 10.1016/j.saa.2020.118756. Epub 2020 Aug 1.

Abstract

Chemometric and separation-based techniques (HPLC) are the most applicable and versatile analytical techniques for the analysis of multicomponent mixtures, in the present contribution, a comparison was highlighted between the two analytical techniques of utmost importance as stability indicating assays: UV-spectrophotometry and HPLC-UV focusing on the greenness of each for the simultaneous determination of amprolium HCl (AMP) and ethopabate (ETHOP) in the presence of their alkaline degradation products. The first method was chemometric methods applied were PLS-1, GA-PLS and GA-ANN. To compare the prediction ability of the models, a 4-factor 5-level experimental design was used to establish a calibration set of 25 mixtures containing different ratios of the drugs and their degradation products. The validity of the proposed methods was assessed using an independent validation set of 5 mixtures. The comparison between the different models showed the superiority of ANN model in solving the highly overlapped spectra of the quaternary mixture, yet using inexpensive and easy to handle instruments like the UV-VIS spectrophotometer. The ANN method was used for the quantitative analysis of the drugs in pharmaceutical dosage form via handling the UV spectral data. The second method was based on liquid chromatographic HPLC determination of AMP and ETHOP using C18 column (250 × 4.6 mm2)-PRONTOSIL 5 μm, a mobile phase consisting of methanol: Hexane sulphonic acid sodium salt at (pH = 3.4 ± 0.2) adjusted by orthophosphoric acid (55: 45 v/v). Quantitation was achieved with UV detection at 270 nm at temperature 24 °C. Linearity, accuracy and precision were found to be acceptable over the concentration range of 10.0-70.0 and 1.0-25.0 μg·mL-1 for AMP and ETHOP, respectively. The proposed methods could be successfully applied for the routine analysis of the studied drugs either in their pure bulk powders or in their pharmaceutical preparations without any preliminary separation step. The results obtained were statistically compared with those obtained by applying the reported method.

Keywords: Amprolium HCl; Chemometry; Comparative study; Ethopabate; HPLC; Neural network.

MeSH terms

  • Amprolium
  • Chromatography, High Pressure Liquid
  • Ethopabate*
  • Powders
  • Spectrophotometry

Substances

  • Powders
  • Ethopabate
  • Amprolium