Efficient two-step lactic acid production from cassava biomass using thermostable enzyme cocktail and lactic acid bacteria: insights from hydrolysis optimization and proteomics analysis

3 Biotech. 2020 Sep;10(9):409. doi: 10.1007/s13205-020-02349-4. Epub 2020 Aug 28.

Abstract

Lactic acid is an intermediate-volume specialty chemical, used in the production of biodegradable polymers and other chemicals. Although lactic acid production process is well established, however, the cost of production is very high. Therefore, in this study; starchy biomass (cassava) was hydrolyzed with in-house enzyme cocktail prepared from Aspergillus foetidus MTCC508 and Bacillus subtilis RA10. Process optimization using Taguchi experimental design helped to optimize the most effective ratio of fungal and bacterial amylase for effective saccharification of cassava. A higher sugar yield of 379.63 mg/gds was obtained under optimized conditions, using 30 U/gds of bacterial enzyme and 90 U/gds of the fungal enzyme at pH 4 within 48 h of saccharification. Among 11 lactic acid bacteria isolated, Lactobacillus fermentum S1A and Lactobacillus farraginis SS3A produced the highest amount of lactic acid 0.81 g/g and 0.77 g/g, respectively, from the cassava hydrolysate. The study proved the potential renewable source of cassava biomass as a source for fermentable sugars that can be fermented to lactic acid with high yield. In future, this cost-effective and environmental-friendly bioprocess can be upscaled for industrial lactic acid production.

Keywords: Amylase; Enzyme cocktail; Glucoamylase; Lactic acid; Lactic acid bacteria.