Engineering telecom single-photon emitters in silicon for scalable quantum photonics

Opt Express. 2020 Aug 31;28(18):26111-26121. doi: 10.1364/OE.397377.

Abstract

We create and isolate single-photon emitters with a high brightness approaching 105 counts per second in commercial silicon-on-insulator (SOI) wafers. The emission occurs in the infrared spectral range with a spectrally narrow zero phonon line in the telecom O-band and shows a high photostability even after days of continuous operation. The origin of the emitters is attributed to one of the carbon-related color centers in silicon, the so-called G center, allowing purification with the 12C and 28Si isotopes. Furthermore, we envision a concept of a highly-coherent scalable quantum photonic platform, where single-photon sources, waveguides and detectors are integrated on an SOI chip. Our results provide a route towards the implementation of quantum processors, repeaters and sensors compatible with the present-day silicon technology.