Nocardioides sp. PD653 genes hcbA1, hcbA2, and hcbA3 encode enzymes that catalyze the oxidative dehalogenation of hexachlorobenzene (HCB), which is one of the most recalcitrant persistent organic pollutants (POPs). In this study, HcbA1, HcbA2, and HcbA3 were heterologously expressed and characterized. Among the flavin species tested, HcbA3 showed the highest affinity for FMN with a K d value of 0.75±0.17 µM. Kinetic assays revealed that HcbA3 followed a ping-pong bi-bi mechanism for the reduction of flavins. The K m for NADH and FMN was 51.66±11.58 µM and 4.43±0.69 µM, respectively. For both NADH and FMN, the V max and k cat were 2.21±0.86 µM and 66.74±5.91 sec-1, respectively. We also successfully reconstituted the oxidative dehalogenase reaction in vitro, which consisted of HcbA1, HcbA3, FMN, and NADH, suggesting that HcbA3 may be the partner reductase component for HcbA1 in Nocardioides sp. PD653.
Keywords: HcbA3; Nocardioides sp. PD653; TC-FDM; flavin reductase; hexachlorobenzene.
© Pesticide Science Society of Japan 2020. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-nc-nd/4.0/).