This research work describes the impact of the surface mechanical attrition treatment (SMAT) on the microstructure of cobalt-chromium-molybdenum (CoCrMo), a biomedical alloy commonly used for orthopedic applications. This surface treatment induces crystalline phases transformations characterized by X-ray diffraction (XRD) and selected area electron diffraction (SAED). The corresponding structural changes are observed from cross-section images obtained by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the SMAT process induces the martensitic transformation of the CoCrMo alloy (from γ-fcc phase to ε-hcp phase) related to an important grain refinement due to twinning and sliding.
Keywords: CoCrMo alloy; martensitic transformation; scanning electron microscopy; selected area electron diffraction; surface mechanical attrition treatment; transmission electron microscopy.
© 2020 Wiley Periodicals LLC.