Preparation of a cross-linked cartilage acellular matrix-poly (caprolactone-ran-lactide-ran-glycolide) film and testing its feasibility as an anti-adhesive film

Mater Sci Eng C Mater Biol Appl. 2020 Dec:117:111283. doi: 10.1016/j.msec.2020.111283. Epub 2020 Jul 24.

Abstract

To protect unwanted tissue adhesions occurring after surgeries, we aimed to fabricate an anti-adhesive film using cartilage acellular matrix (CAM) with anti-vascular inhibition activity. Additionally, to fabricate anti-adhesive films with tunable swelling, mechanical, and biodegradation properties, a biodegradable polyester (PEP) with N-hydroxysuccinimide (NHS) in the chain end position was synthesized as a cross-linker. CAM/PEP (CP) films were prepared with various CAM: PEP ratios in the wide size with repeatable reproducibility, and then, cross-linked CP (Cx-CP) were obtained by the interpenetrating cross-linking reaction between the amine group on CAM and the NHS group on PEP cross-linkers under thermal treatment. The biodegradation, wettability, swelling, and mechanical properties of the prepared anti-adhesive Cx-CP films were controlled by varying the CAM:PEP ratio. The degradation half-life, contact angle, elastic moduli and toughness of Cx-CP films increased according to the increasing PEP content. Additionally, Cx-CP films significantly inhibits the attachment and proliferation of HUVECs. Cx-CP film prepared by varying the CAM:PEP ratio can be tailored to meet individual requirements for in vivo injured tissues. In animal experiments, anti-adhesive Cx-CP films implanted between the peritoneal wall and the cecum significantly suppressed tissue adhesion between them. Additionally, good adhesion effect observed at anti-adhesive film maintained for proper time period at injured tissues. Taken together, in this work, we successfully achieved strategy for the development of anti-adhesive barrier with tunable swelling, mechanical, and biodegradation properties.

Keywords: Anti-adhesive barrier; Cartilage acellular matrix; Cross-linking; Degradation; Polyester.

MeSH terms

  • Adhesives*
  • Animals
  • Caproates
  • Cartilage*
  • Dioxanes
  • Feasibility Studies
  • Lactones
  • Reproducibility of Results

Substances

  • Adhesives
  • Caproates
  • Dioxanes
  • Lactones
  • caprolactone
  • dilactide