The genetics and biomechanics of thoracic aortic diseases

Vasc Biol. 2019 Oct 15;1(1):R13-R25. doi: 10.1530/VB-19-0027. eCollection 2019.

Abstract

Thoracic aortic aneurysms and aortic dissections (TAAD) are highly fatal emergencies within cardiothoracic surgery. With increasing age, thoracic aneurysms become more prevalent and pose an even greater threat when they develop into aortic dissections. Both diseases are multifactorial and are influenced by a multitude of physiological and biomechanical processes. Structural stability of aorta can be disrupted by genes, such as those for extracellular matrix and contractile protein, as well as telomere dysfunction, which leads to senescence of smooth muscle and endothelial cells. Biomechanical changes such as increased luminal pressure imposed by hypertension are also very prevalent and lead to structural instability. Furthermore, ageing is associated with a pro-inflammatory state that exacerbates degeneration of vessel wall, facilitating the development of both aortic aneurysms and aortic dissection. This literature review provides an overview of the aetiology and pathophysiology of both thoracic aneurysms and aortic dissections. With an improved understanding, new therapeutic targets may eventually be identified to facilitate treatment and prevention of these diseases.

Keywords: aneurysm; aorta; biomechanic; dissection; thoracic aorta.

Publication types

  • Review