An evidence-based systematic review on emerging therapeutic and preventive strategies to treat novel coronavirus (SARS-CoV-2) during an outbreak scenario

J Basic Clin Physiol Pharmacol. 2020 Sep 14;/j/jbcpp.ahead-of-print/jbcpp-2020-0113/jbcpp-2020-0113.xml. doi: 10.1515/jbcpp-2020-0113. Online ahead of print.


A novel coronavirus infection coronavirus disease 2019 (COVID-19) emerged from Wuhan, Hubei Province of China, in December 2019 caused by SARS-CoV-2 is believed to be originated from bats in the local wet markets. Later, animal to human and human-to-human transmission of the virus began and resulting in widespread respiratory illness worldwide to around more than 180 countries. The World Health Organization declared this disease as a pandemic in March 2020. There is no clinically approved antiviral drug or vaccine available to be used against COVID-19. Nevertheless, few broad-spectrum antiviral drugs have been studied against COVID-19 in clinical trials with clinical recovery. In the current review, we summarize the morphology and pathogenesis of COVID-19 infection. A strong rational groundwork was made keeping the focus on current development of therapeutic agents and vaccines for SARS-CoV-2. Among the proposed therapeutic regimen, hydroxychloroquine, chloroquine, remdisevir, azithromycin, toclizumab and cromostat mesylate have shown promising results, and limited benefit was seen with lopinavir-ritonavir treatment in hospitalized adult patients with severe COVID-19. Early development of SARS-CoV-2 vaccine started based on the full-length genome analysis of severe acute respiratory syndrome coronavirus. Several subunit vaccines, peptides, nucleic acids, plant-derived, recombinant vaccines are under pipeline. This article concludes and highlights ongoing advances in drug repurposing, therapeutics and vaccines to counter COVID-19, which collectively could enable efforts to halt the pandemic virus infection.

Keywords: SARS CoV-2; antiviral drugs; coronavirus; vaccines.

Publication types

  • Review