The aim of this study was to explore the toxicokinetics of diisobutyl-phthalate (DiBP) and its major metabolite, monoisobutyl-phthalate (MiBP), by developing a UPLC-ESI-MS/MS method for simultaneously measuring DiBP and MiBP in rat plasma, urine, feces, and 11 different tissues. For the experiment, 0.1% (v/v) aqueous formic acid and acetonitrile mobile phase by gradient elution at a flow rate of 0.3 mL/min, equipped with a KINETEX core-shell C18-column (50 × 2.1 mm, 1.7 μm), was used to completely separate analytes. The mass transitions were m/z 279.1 → 149.0 for DiBP, 221.0 → 77.0 for MiBP, and 283.2 → 153.0 for DiBP-d4 as an internal standard. The developed assay had lower limits of quantification of 0.01 ng/mL for DiBP and 0.1 ng/mL for MiBP at all biological matrices. Toxicokinetics of DiBP were characterized by extensive distribution, short half-life, and high clearance. DiBP was rapidly metabolized to MiBP, with MiBP levels consistently exceeding the DiBP levels. Distribution of MiBP to tissues was considerable. The developed analytical method satisfied international criteria and was successfully applied to toxicokinetic studies after oral and intravenous administration of DiBP to rats. Findings of this study may be useful for evaluating the external exposure and toxic potential of DiBP and its metabolite in risk assessment.
Keywords: Diisobutyl phthalate; Monoisobutyl phthalate; Tissue distribution; Toxicokinetics; UPLC-ESI-MS/MS.
Copyright © 2020 Elsevier Ltd. All rights reserved.