The low copy nuclear region, RPB2 as a novel DNA barcode region for species identification in the rattan genus Calamus (Arecaceae)

Physiol Mol Biol Plants. 2020 Sep;26(9):1875-1887. doi: 10.1007/s12298-020-00864-5. Epub 2020 Aug 26.

Abstract

Taxonomic complexities, like environmental plasticity and homoplasy, make precise identification challenging in Calamus, the genus of spiny climbing palms of the subfamily Calamoideae (Arecaceae). In the present study, the species discriminatory power of twelve potential DNA barcode regions (rbcL, matK, psbA-trnH, rpoC, rpoB, psbK-psbI, atpF-atpH, psbZ-trnfM, ITS1, ITS2, PRK, and RPB2) were evaluated in 21 species of Calamus from the Western Ghats region of India, using distance, tree, and similarity based statistical methods. Except for the low copy nuclear region, RPB2, none of the tested plastid loci or nuclear loci ITS, either singly or in combinations, could discriminate all the species of Calamus due to low substitution rate of plastid regions and multiple copies of ITS respectively. The RPB2 locus showed highest species resolution with 96% accuracy in similarity based analysis, indicating its potential and efficiency as a barcode locus for the genus. The putative "Calamus gamblei complex" based on overlapping morphology was successfully resolved as six distinct, though closely related, species. The analysis also indicates that C. delessertianus is a morphological variant of C. dransfieldii. In spite of being a low copy nuclear gene region, RPB2 provided an efficient barcode to delineate Calamus species and has the potential to further extend its use as a prospective barcode to other Palm genera.

Keywords: Calamus; DNA barcoding; Low copy nuclear region; RPB2; Rattans; Species complex.