Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;29(12):2941-2952.
doi: 10.1007/s00586-020-06595-1. Epub 2020 Sep 18.

Can the Charlson Comorbidity Index be used to predict the ASA grade in patients undergoing spine surgery?

Affiliations

Can the Charlson Comorbidity Index be used to predict the ASA grade in patients undergoing spine surgery?

A F Mannion et al. Eur Spine J. 2020 Dec.

Abstract

Background: The American Society of Anaesthesiologists' Physical Status Score (ASA) is a key variable in predictor models of surgical outcome and "appropriate use criteria". However, at the time when such tools are being used in decision-making, the ASA rating is typically unknown. We evaluated whether the ASA class could be predicted statistically from Charlson Comorbidy Index (CCI) scores and simple demographic variables.

Methods: Using established algorithms, the CCI was calculated from the ICD-10 comorbidity codes of 11'523 spine surgery patients (62.3 ± 14.6y) who also had anaesthetist-assigned ASA scores. These were randomly split into training (N = 8078) and test (N = 3445) samples. A logistic regression model was built based on the training sample and used to predict ASA scores for the test sample and for temporal (N = 341) and external validation (N = 171) samples.

Results: In a simple model with just CCI predicting ASA, receiver operating characteristics (ROC) analysis revealed a cut-off of CCI ≥ 1 discriminated best between being ASA ≥ 3 versus < 3 (area under the curve (AUC), 0.70 ± 0.01, 95%CI,0.82-0.84). Multiple logistic regression analyses including age, sex, smoking, and BMI in addition to CCI gave better predictions of ASA (Nagelkerke's pseudo-R2 for predicting ASA class 1 to 4, 46.6%; for predicting ASA ≥ 3 vs. < 3, 37.5%). AUCs for discriminating ASA ≥ 3 versus < 3 from multiple logistic regression were 0.83 ± 0.01 (95%CI, 0.82-0.84) for the training sample and 0.82 ± 0.01 (95%CI, 0.81-0.84), 0.85 ± 0.02 (95%CI, 0.80-0.89), and 0.77 ± 0.04 (95%CI,0.69-0.84) for the test, temporal and external validation samples, respectively. Calibration was adequate in all validation samples.

Conclusions: It was possible to predict ASA from CCI. In a simple model, CCI ≥ 1 best distinguished between ASA ≥ 3 and < 3. For a more precise prediction, regression algorithms were created based on CCI and simple demographic variables obtainable from patient interview. The availability of such algorithms may widen the utility of decision aids that rely on the ASA, where the latter is not readily available.

Keywords: ASA grade; Charlson comorbidity index; Prediction algorithm; Regression analysis; Spine surgery.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources