Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties

Drug Deliv Transl Res. 2021 Jun;11(3):1218-1235. doi: 10.1007/s13346-020-00849-7. Epub 2020 Sep 18.

Abstract

Mycobacterium tuberculosis (MTB) is one of the most threatening pathogens for its latent infection in macrophages. The intracellular MTB isolated itself from drugs and could spread via macrophages. Therefore, a mannose-modified macrophage-targeting solid lipid nanoparticle, MAN-IC-SLN, loading the pH-sensitive prodrug of isoniazid (INH), was designed to treat the latent tuberculosis infection. The surface of SLNs was modified by a synthesized 6-octadecylimino-hexane-1,2,3,4,5-pentanol (MAN-SA) to target macrophages, and the modified SLNs showed a higher cell uptake in macrophages (97.2%) than unmodified SLNs (42.4%). The prodrug, isonicotinic acid octylidene-hydrazide (INH-CHO), was synthesized to achieve the pH-sensitive release of INH in macrophages. The INH-CHO-loaded SLNs exhibited a pH-sensitive release profile and accomplished a higher accumulated release in pH 5.5 media (82.63 ± 2.12%) compared with the release in pH 7.4 media (58.83 ± 3.84%). Mycobacterium smegmatis was used as a substitute for MTB, and the MAN-IC-SLNs showed a fourfold increase of intracellular antibiotic efficacy and enhanced macrophage uptake because of the pH-sensitive degradation of INH-CHO and MAN-SA in SLNs, respectively. For the in vivo antibiotic efficacy test, the SLNs group displayed an 83% decrease of the colony-forming unit while the free INH group only showed a 60% decrease. The study demonstrates that macrophage targeting and pH-sensitive SLNs can be used as a promising platform for the latent tuberculosis infection. Graphical Abstract Table of contents: Macrophage-targeting and pH-sensitive solid lipid nanoparticles (SLN) were administrated to the lung via nebulization. Macrophage targeting was achieved by appropriate particle size and surface mannose modification with synthesized MAN-SA. After being swallowed by macrophages, the prodrug, Isonicotinic acid octylidene-hydrazide (INH-CHO), quickly released isoniazid, which was triggered by the intracellular acid environment. The SLNs exhibited higher intracellular antibiotic efficacy due to their macrophage-targeting and pH-sensitive properties.

Keywords: Latent tuberculosis infection; Mannose modification; Prodrug; Targeting macrophages; pH-sensitive release profile.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Hydrogen-Ion Concentration
  • Latent Tuberculosis* / metabolism
  • Liposomes
  • Macrophages / metabolism
  • Nanoparticles*
  • Tuberculosis* / drug therapy

Substances

  • Lipid Nanoparticles
  • Liposomes