Fingerprint of volcanic forcing on the ENSO-Indian monsoon coupling

Sci Adv. 2020 Sep 18;6(38):eaba8164. doi: 10.1126/sciadv.aba8164. Print 2020 Sep.

Abstract

Coupling of the El Niño-Southern Oscillation (ENSO) and Indian monsoon (IM) is central to seasonal summer monsoon rainfall predictions over the Indian subcontinent, although a nonstationary relationship between the two nonlinear phenomena can limit seasonal predictability. Radiative effects of volcanic aerosols injected into the stratosphere during large volcanic eruptions (LVEs) tend to alter ENSO evolution; however, their impact on ENSO-IM coupling remains unclear. Here, we investigate how LVEs influence the nonlinear behavior of the ENSO and IM dynamical systems using historical data, 25 paleoclimate reconstructions, last-millennium climate simulations, large-ensemble targeted climate sensitivity experiments, and advanced analysis techniques. Our findings show that LVEs promote a significantly enhanced phase-synchronization of the ENSO and IM oscillations, due to an increase in the angular frequency of ENSO. The results also shed innovative insights into the physical mechanism underlying the LVE-induced enhancement of ENSO-IM coupling and strengthen the prospects for improved seasonal monsoon predictions.