Seawater Culture Increases Omega-3 Long-Chain Polyunsaturated Fatty Acids (N-3 LC-PUFA) Levels in Japanese Sea Bass ( Lateolabrax japonicus), Probably by Upregulating Elovl5

Animals (Basel). 2020 Sep 17;10(9):1681. doi: 10.3390/ani10091681.


The fatty acid compositions of the fish muscle and liver are substantially affected by rearing environment. However, the mechanisms underlying this effect have not been thoroughly described. In this study, we investigated the effects of different culture patterns, i.e., marine cage culture and freshwater pond culture, on long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis in an aquaculturally important fish, the Japanese sea bass (Lateolabrax japonicus). Fish were obtained from two commercial farms in the Guangdong province, one of which raises Japanese sea bass in freshwater, while the other cultures sea bass in marine cages. Fish were fed the same commercial diet. We found that omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) levels in the livers and muscles of the marine cage cultured fish were significantly higher than those in the livers and muscles of the freshwater pond cultured fish. Quantitative real-time PCRs indicated that fatty acid desaturase 2 (FADS2) transcript abundance was significantly lower in the livers of the marine cage reared fish as compared to the freshwater pond reared fish, but that fatty acid elongase 5 (Elovl5) transcript abundance was significantly higher. Consistent with this, two of the 28 CpG loci in the FADS2 promoter region were heavily methylated in the marine cage cultured fish, but were only slightly methylated in freshwater pond cultured fish (n = 5 per group). Although the Elovl5 promoter was less methylated in the marine cage reared fish as compared to the freshwater pond reared fish, this difference was not significant. Thus, our results might indicate that Elovl5, not FADS2, plays an important role in the enhancing LC-PUFA synthesis in marine cage cultures.

Keywords: freshwater pond culture; gene promoter methylation; marine cage culture; n-3 LC-PUFA; sea bass.