Revealing the structure of pharmacobehavioral space through motion sequencing
- PMID: 32958923
- PMCID: PMC7606807
- DOI: 10.1038/s41593-020-00706-3
Revealing the structure of pharmacobehavioral space through motion sequencing
Abstract
Understanding how genes, drugs and neural circuits influence behavior requires the ability to effectively organize information about similarities and differences within complex behavioral datasets. Motion Sequencing (MoSeq) is an ethologically inspired behavioral analysis method that identifies modular components of three-dimensional mouse body language called 'syllables'. Here, we show that MoSeq effectively parses behavioral differences and captures similarities elicited by a panel of neuroactive and psychoactive drugs administered to a cohort of nearly 700 mice. MoSeq identifies syllables that are characteristic of individual drugs, a finding we leverage to reveal specific on- and off-target effects of both established and candidate therapeutics in a mouse model of autism spectrum disorder. These results demonstrate that MoSeq can meaningfully organize large-scale behavioral data, illustrate the power of a fundamentally modular description of behavior and suggest that behavioral syllables represent a new class of druggable target.
Conflict of interest statement
Competing Interest Statement
The authors declare the following competing interests: ABW, MJJ and SRD are co-founders of Syllable Life Sciences, Inc. ABW and SRD are co-authors on awarded patents WO2013170129A1 and US10025973B2, which describe behavioral methods used herein.
Figures
Comment in
-
Computational behavior analysis takes on drug development.Nat Neurosci. 2020 Nov;23(11):1314-1316. doi: 10.1038/s41593-020-00722-3. Nat Neurosci. 2020. PMID: 32999472 No abstract available.
Similar articles
-
Characterizing the structure of mouse behavior using Motion Sequencing.Nat Protoc. 2024 Nov;19(11):3242-3291. doi: 10.1038/s41596-024-01015-w. Epub 2024 Jun 26. Nat Protoc. 2024. PMID: 38926589 Review.
-
Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics.Nat Methods. 2024 Jul;21(7):1329-1339. doi: 10.1038/s41592-024-02318-2. Epub 2024 Jul 12. Nat Methods. 2024. PMID: 38997595 Free PMC article.
-
Q&A: Understanding the composition of behavior.BMC Biol. 2019 May 29;17(1):44. doi: 10.1186/s12915-019-0663-3. BMC Biol. 2019. PMID: 31142307 Free PMC article.
-
Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics.bioRxiv [Preprint]. 2023 Dec 23:2023.03.16.532307. doi: 10.1101/2023.03.16.532307. bioRxiv. 2023. Update in: Nat Methods. 2024 Jul;21(7):1329-1339. doi: 10.1038/s41592-024-02318-2 PMID: 36993589 Free PMC article. Updated. Preprint.
-
IntelliCage as a tool for measuring mouse behavior - 20 years perspective.Behav Brain Res. 2020 Jun 18;388:112620. doi: 10.1016/j.bbr.2020.112620. Epub 2020 Apr 14. Behav Brain Res. 2020. PMID: 32302617 Review.
Cited by
-
Inferring neural dynamics of memory during naturalistic social communication.bioRxiv [Preprint]. 2024 Jan 27:2024.01.26.577404. doi: 10.1101/2024.01.26.577404. bioRxiv. 2024. PMID: 38328156 Free PMC article. Preprint.
-
OpenApePose, a database of annotated ape photographs for pose estimation.Elife. 2023 Dec 11;12:RP86873. doi: 10.7554/eLife.86873. Elife. 2023. PMID: 38078902 Free PMC article.
-
A comparison of machine learning methods for quantifying self-grooming behavior in mice.Front Behav Neurosci. 2024 Jan 29;18:1340357. doi: 10.3389/fnbeh.2024.1340357. eCollection 2024. Front Behav Neurosci. 2024. PMID: 38347909 Free PMC article.
-
Historical and Modern Evidence for the Role of Reward Circuitry in Emergence.Anesthesiology. 2022 Jun 1;136(6):997-1014. doi: 10.1097/ALN.0000000000004148. Anesthesiology. 2022. PMID: 35362070 Free PMC article. Review.
-
Toward a Computational Neuroethology of Vocal Communication: From Bioacoustics to Neurophysiology, Emerging Tools and Future Directions.Front Behav Neurosci. 2021 Dec 20;15:811737. doi: 10.3389/fnbeh.2021.811737. eCollection 2021. Front Behav Neurosci. 2021. PMID: 34987365 Free PMC article. Review.
References
-
- Tinbergen N The study of instinct. (Clarendon Press, 1951).
-
- Dawkins R in Growing points in ethology. (Cambridge U Press, 1976).
Methods References
-
- Fukunaga K & Olsen DR An algorithm for finding intrinsic dimensionality of data. IEEE Transactions on Computers 20, 176–183, doi:(null) (1971).
-
- Bishop CM Pattern Recognition and Machine Learning. (Springer, 2006).
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
