Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;47(12):1133-1140.
doi: 10.1007/s10295-020-02310-7. Epub 2020 Sep 23.

Simultaneous identification to monitor consortia strain dynamics of four biofuel yeast species during fermentation

Affiliations

Simultaneous identification to monitor consortia strain dynamics of four biofuel yeast species during fermentation

Gabriel Perez et al. J Ind Microbiol Biotechnol. 2020 Dec.

Abstract

Mixed strain dynamics are still not well or easily monitored although recently molecular identification methods have improved our knowledge. This study used a chromogenic differential plating medium that allows the discrimination of four of the main selected biofuel strains that are currently under development for ethanol production from cellulosic hydrolysates. Complete fermentation of hexoses and xylose was obtained with a yeast consortium composed of Spathaspora passalidarum, Scheffersomyces stipitis, Candida akabanensis and Saccharomyces cerevisiae. The results showed that C.akabanensis excessively dominated consortium balance. Reducing its inoculum from 33 to 4.8% improved population strain balance and fermentation efficiency. Comparison of the consortia with single strain fermentations showed that it optimize sugar consumption and ethanol yields. This simple and cheap method also has advantages compared with molecular methods, as the yeast strains do not need to be genetically marked and identified cell proportions are probably active in the fermentation system as compared to DNA determination methods.

Keywords: Candida akabanensis; Cellobiose; Colony differentiation; Scheffersomyces stipitis; Spathaspora passalidarum.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391. https://doi.org/10.1007/s10295-008-0327-8 - DOI - PubMed
    1. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng. https://doi.org/10.1002/bit.24370 - DOI - PubMed
    1. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-017-0059-y - DOI
    1. Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA (2020) Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 47:109–132. https://doi.org/10.1007/s10295-019-02242-x - DOI - PubMed
    1. Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 35:367–375. https://doi.org/10.1007/s10295-007-0293-6 - DOI - PubMed

Supplementary concepts

LinkOut - more resources