Structure and Performance of Benzoxazine Composites for Space Radiation Shielding

Molecules. 2020 Sep 22;25(18):4346. doi: 10.3390/molecules25184346.

Abstract

Innovative multifunctional materials that combine structural functionality with other spacecraft subsystem functions have been identified as a key enabling technology for future deep space missions. In this work, we report the structure and performance of multifunctional polymer matrix composites developed for aerospace applications that require both structural functionality and space radiation shielding. Composites comprised of ultra-high molecular weight polyethylene (UHMWPE) fiber reinforcement and a hydrogen-rich polybenzoxazine matrix are prepared using a low-pressure vacuum bagging process. The polybenzoxazine matrix is derived from a novel benzoxazine resin that possesses a unique combination of attributes: high hydrogen concentration for shielding against galactic cosmic rays (GCR), low polymerization temperature to prevent damage to UHMWPE fibers during composite fabrication, long shelf-life, and low viscosity to improve flow during molding. Dynamic mechanical analysis (DMA) is used to study rheological and thermomechanical properties. Composite mechanical properties, obtained using several standardized tests, are reported. Improvement in composite stiffness, through the addition of carbon fiber skin layers, is investigated. Radiation shielding performance is evaluated using computer-based simulations. The composites demonstrate clear advantages over benchmark materials in terms of combined structural and radiation shielding performance.

Keywords: benzoxazine; carbon fiber; galactic cosmic radiation; multifunctional composite; polyethylene; radiation shield; structural.

MeSH terms

  • Benzoxazines / chemistry*
  • Benzoxazines / pharmacology*
  • Cosmic Radiation / adverse effects
  • Extraterrestrial Environment*
  • Mechanical Tests
  • Polyethylenes / chemistry
  • Polymerization
  • Radiation-Protective Agents / chemistry*
  • Radiation-Protective Agents / pharmacology*
  • Transition Temperature

Substances

  • Benzoxazines
  • Polyethylenes
  • Radiation-Protective Agents
  • ultra-high molecular weight polyethylene