Background context: The introduction and integration of robot technology into modern spine surgery provides surgeons with millimeter accuracy for pedicle screw placement. Coupled with computer-based navigation platforms, robot-assisted spine surgery utilizes augmented reality to potentially improve the safety profile of instrumentation.
Purpose: In this study, the authors seek to determine the safety and efficacy of robotic-assisted pedicle screw placement compared to conventional free-hand (FH) technique.
Study design/setting: We conducted a systematic review of the electronic databases using different MeSH terms from 1980 to 2020.
Outcome measures: The present study measures pedicle screw accuracy, complication rates, proximal-facet joint violation, intraoperative radiation time, radiation dosage, and length of surgery.
Results: A total of 1,525 patients (7,379 pedicle screws) from 19 studies with 777 patients (51.0% with 3,684 pedicle screws) in the robotic-assisted group were included. Perfect pedicle screw accuracy, as categorized by Gerztbein-Robbin Grade A, was significantly superior with robotic-assisted surgery compared to FH-technique (Odds ratio [OR]: 1.68, 95% confidence interval [CI]: 1.20-2.35; p=.003). Similarly, clinically acceptable pedicle screw accuracy (Grade A+B) was significantly higher with robotic-assisted surgery versus FH-technique (OR: 1.54, 95% CI: 1.01-2.37; p=.05). Furthermore, the complication rates and proximal-facet joint violation were 69% (OR: 0.31, 95% CI: 0.20-0.48; p<.00001) and 92% less likely (OR: 0.08, 95% CI: 0.03-0.20; p<.00001) with robotic-assisted surgery versus FH-group. Robotic-assisted pedicle screw implantation significantly reduced intraoperative radiation time (MD: -5.30, 95% CI: -6.83-3.76; p<.00001) and radiation dosage (MD: -3.70, 95% CI: -4.80-2.60; p<.00001) compared to the conventional FH-group. However, the length of surgery was significantly higher with robotic-assisted surgery (MD: 22.70, 95% CI: 6.57-38.83; p=.006) compared to the FH-group.
Conclusion: This meta-analysis corroborates the accuracy of robot-assisted pedicle screw placement.
Keywords: Artificial intelligence; Augmented realit; Efficacy; Pedicle screw; Robotics; Safety; Spine fusion.
Copyright © 2020 Elsevier Inc. All rights reserved.