Are There Differences in the Reaction of the Light-Tolerant Subgenus Pinus spp. Biomass to Climate Change as Compared to Light-Intolerant Genus Picea spp.?

Plants (Basel). 2020 Sep 23;9(10):1255. doi: 10.3390/plants9101255.


Currently, the problem of the impact of climate change on the productivity of forest ecosystems and their carbon-depositing capacity is far from being solved. Therefore, this paper presents the models for the stand biomass of the two-needled subgenus' (Pinus spp.) and the genus Picea spp.'s trends along the trans-Eurasian hydrothermal gradients, designed for pure stands in a number of 2110- and 870-sample plots with Pinus and Picea correspondingly. It was found that in the case of an increase in mean winter temperatures by 1 °C, pine and spruce respond by increasing the biomass of most components, and in the case of an increase in the annual sum of precipitation by 100 mm, the total, aboveground, stem and root biomasses of pine and spruce react the same way, but crown biomass reacts in the opposite way. Therefore, all identified trends are species-specific.

Keywords: January temperature; annual rainfall; biomass equations; hydrothermal gradients; regression models; stand biomass.