On the use of n-octyl gallate and salicylhydroxamic acid to study the alternative oxidase role

Arch Biochem Biophys. 2020 Nov 15;694:108603. doi: 10.1016/j.abb.2020.108603. Epub 2020 Sep 25.

Abstract

The alternative oxidase (AOX) catalyzes the transfer of electrons from ubiquinol to oxygen without the translocation of protons across the inner mitochondrial membrane. This enzyme has been proposed to participate in the regulation of cell growth, sporulation, yeast-mycelium transition, resistance to reactive oxygen species, infection, and production of secondary metabolites. Two approaches have been used to evaluate AOX function: incubation of cells for long periods of time with AOX inhibitors or deletion of AOX gene. However, AOX inhibitors might have different targets. To test non-specific effects of n-octyl gallate (nOg) and salicylhydroxamic acid (SHAM) on fungal physiology we measured the growth and respiratory capacity of two fungal strains lacking (Ustilago maydis-Δaox and Saccharomyces cerevisiae) and three species containing the AOX gene (U. maydis WT, Debaryomyces hansenii, and Aspergillus nidulans). For U. maydis, a strong inhibition of growth and respiratory capacity by SHAM was observed, regardless of the presence of AOX. Similarly, A. nidulans mycelial growth was inhibited by low concentrations of nOg independently of AOX expression. In contrast, these inhibitors had no effect or had a minor effect on S. cerevisiae and D. hansenii growth. These results show that nOg and SHAM have AOX independent effects which vary in different microorganisms, indicating that studies based on long-term incubation of cells with these inhibitors should be considered as inconclusive.

Keywords: Alternative oxidase; Fungal growth; Fungal respiration; Respiratory inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Growth Processes / drug effects
  • Enzyme Inhibitors / pharmacology*
  • Fungal Proteins / antagonists & inhibitors*
  • Fungi / drug effects*
  • Fungi / growth & development
  • Fungi / metabolism
  • Gallic Acid / analogs & derivatives*
  • Gallic Acid / pharmacology
  • Mitochondria / drug effects
  • Mitochondria / metabolism
  • Mitochondrial Proteins / antagonists & inhibitors
  • Oxidoreductases / antagonists & inhibitors*
  • Oxygen / metabolism
  • Salicylamides / pharmacology*

Substances

  • Enzyme Inhibitors
  • Fungal Proteins
  • Mitochondrial Proteins
  • Salicylamides
  • octyl gallate
  • Gallic Acid
  • salicylhydroxamic acid
  • Oxidoreductases
  • Oxygen