Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir

Elife. 2020 Sep 29;9:e60933. doi: 10.7554/eLife.60933.

Abstract

The latent reservoir is a major barrier to HIV cure. As latently infected cells cannot be phenotyped directly, the features of the in vivo reservoir have remained elusive. Here, we describe a method that leverages high-dimensional phenotyping using CyTOF to trace latently infected cells reactivated ex vivo to their original pre-activation states. Our results suggest that, contrary to common assumptions, the reservoir is not randomly distributed among cell subsets, and is remarkably conserved between individuals. However, reservoir composition differs between tissues and blood, as do cells successfully reactivated by different latency reversing agents. By selecting 8-10 of our 39 original CyTOF markers, we were able to isolate highly purified populations of unstimulated in vivo latent cells. These purified populations were highly enriched for replication-competent and intact provirus, transcribed HIV, and displayed clonal expansion. The ability to isolate unstimulated latent cells from infected individuals enables previously impossible studies on HIV persistence.

Keywords: CyTOF; HIV; clonal expansion; human; infectious disease; microbiology; replication-competent reservoir; tissues; virus.

Plain language summary

There is no cure for the human immunodeficiency virus infection (HIV), but anti-retroviral drugs allow infected people to keep the virus at bay and lead a normal life. These drugs suppress the growth of HIV, but they do not eliminate the virus. If the treatment is interrupted, the virus bounces back within weeks in most individuals. HIV can start growing again because it hides within particular immune cells, called T cells. These infected cells stay in the infected person’s body for their whole life in a dormant or “latent” state, and represent the main barrier to an HIV cure. If these cells could be eliminated or prevented from producing more virus without daily treatment, then HIV could be cured. The fact that HIV hides inside T cells has been known for a long time, but it has remained unclear exactly what kinds of T cells the virus prefers. One challenge to characterizing latently-infected cells is that there is no single protein made by them that is not also made by uninfected T cells. The latently-infected T cells are also very rare: HIV mainly attaches to a protein called CD4, but only one in about a million T cells with CD4 contain the virus. To figure out which CD4-carrying T cells in a patient sample are latently infected, the cells are extracted from the patient’s body and ‘reactivated’ so the virus will start growing again. Unfortunately, the mixture of drugs used to reactivate the T cells changes the cells and the proteins they are producing, which obscures the features the latently-infected T cells had before reactivation. Neidleman, Luo et al. developed a new approach to trace the infected, reactivated T cells back to their state before reactivation. Using computational methods and a laboratory technique called mass cytometry, the levels of approximately 40 different proteins were measured in millions of T cells from people living with HIV. These experiments provided an ‘atlas’ of overall T cell features onto which each reactivated cell could be mapped. The population of latently-infected T cells exhibited common features among all the participants. Selecting a few of the most abundant proteins on the surface of the latently-infected cells allowed these cells to be physically separated from all other immune cells. In the future, this relatively pure population of infected T cells could be used to study how HIV can persist for many decades. The ‘map’ of these cells’ features will provide a valuable resource for HIV researchers and might enable the discovery of new drugs to eliminate the latent T cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD4-Positive T-Lymphocytes* / cytology
  • CD4-Positive T-Lymphocytes* / virology
  • Cell Separation
  • HIV Infections* / immunology
  • HIV Infections* / virology
  • HIV-1* / immunology
  • HIV-1* / pathogenicity
  • Humans
  • Immunophenotyping
  • Mass Spectrometry
  • Proviruses
  • Virus Latency / immunology*