Methods to estimate baseline creatinine and define acute kidney injury in lean Ugandan children with severe malaria: a prospective cohort study

BMC Nephrol. 2020 Sep 29;21(1):417. doi: 10.1186/s12882-020-02076-1.

Abstract

Background: Acute kidney injury (AKI) is increasingly recognized as a consequential clinical complication in children with severe malaria. However, approaches to estimate baseline creatinine (bSCr) are not standardized in this unique patient population. Prior to wide-spread utilization, bSCr estimation methods need to be evaluated in many populations, particularly in children from low-income countries.

Methods: We evaluated six methods to estimate bSCr in Ugandan children aged 6 months to 12 years of age in two cohorts of children with severe malaria (n = 1078) and healthy community children (n = 289). Using isotope dilution mass spectrometry (IDMS)-traceable creatinine measures from community children, we evaluated the bias, accuracy and precision of estimating bSCr using height-dependent and height-independent estimated glomerular filtration (eGFR) equations to back-calculate bSCr or estimating bSCr directly using published or population-specific norms.

Results: We compared methods to estimate bSCr in healthy community children against the IDMS-traceable SCr measure. The Pottel-age based equation, assuming a normal GFR of 120 mL/min per 1.73m2, was the more accurate method with minimal bias when compared to the Schwartz height-based equation. Using the different bSCr estimates, we demonstrated the prevalence of KDIGO-defined AKI in children with severe malaria ranged from 15.6-43.4%. The lowest estimate was derived using population upper levels of normal and the highest estimate was derived using the mean GFR of the community children (137 mL/min per 1.73m2) to back-calculate the bSCr. Irrespective of approach, AKI was strongly associated with mortality with a step-wise increase in mortality across AKI stages (p < 0.0001 for all). AKI defined using the Pottel-age based equation to estimate bSCr showed the strongest relationship with mortality with a risk ratio of 5.13 (95% CI 3.03-8.68) adjusting for child age and sex.

Conclusions: We recommend using height-independent age-based approaches to estimate bSCr in hospitalized children in sub-Saharan Africa due to challenges in accurate height measurements and undernutrition which may impact bSCr estimates. In this population the Pottel-age based GFR estimating equation obtained comparable bSCr estimates to population-based estimates in healthy children.

Keywords: Acute kidney injury; Baseline creatinine; Methods; Mortality; Pediatric; Pottel; Schwartz; Severe malaria; Sub-Saharan Africa; Undernutrition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Kidney Injury / blood*
  • Acute Kidney Injury / complications
  • Acute Kidney Injury / diagnosis
  • Acute Kidney Injury / epidemiology
  • Analysis of Variance
  • Biomarkers / blood
  • Blood Chemical Analysis / methods*
  • Body Weight
  • Case-Control Studies
  • Child
  • Child, Preschool
  • Creatinine / blood*
  • Female
  • Glomerular Filtration Rate*
  • Humans
  • Infant
  • Malaria / blood
  • Malaria / complications*
  • Malaria / mortality
  • Male
  • Models, Statistical
  • Prevalence
  • Prospective Studies
  • Thinness
  • Uganda / epidemiology

Substances

  • Biomarkers
  • Creatinine