Integrating information in the brain's EM field: the cemi field theory of consciousness

Neurosci Conscious. 2020 Sep 22;2020(1):niaa016. doi: 10.1093/nc/niaa016. eCollection 2020.

Abstract

A key aspect of consciousness is that it represents bound or integrated information, prompting an increasing conviction that the physical substrate of consciousness must be capable of encoding integrated information in the brain. However, as Ralph Landauer insisted, 'information is physical' so integrated information must be physically integrated. I argue here that nearly all examples of so-called 'integrated information', including neuronal information processing and conventional computing, are only temporally integrated in the sense that outputs are correlated with multiple inputs: the information integration is implemented in time, rather than space, and thereby cannot correspond to physically integrated information. I point out that only energy fields are capable of integrating information in space. I describe the conscious electromagnetic information (cemi) field theory which has proposed that consciousness is physically integrated, and causally active, information encoded in the brain's global electromagnetic (EM) field. I here extend the theory to argue that consciousness implements algorithms in space, rather than time, within the brain's EM field. I describe how the cemi field theory accounts for most observed features of consciousness and describe recent experimental support for the theory. I also describe several untested predictions of the theory and discuss its implications for the design of artificial consciousness. The cemi field theory proposes a scientific dualism that is rooted in the difference between matter and energy, rather than matter and spirit.

Keywords: cemi field theory; computing; consciousness; electromagnetic field; integrated information; qualia.