Others' action observation activates in the observer a coordinated hand-eye motor program, covert for the hand (i.e. motor resonance), and overt for the eye (i.e. proactive gaze), similar to that of the observed agent. The biological motion hypothesis of action anticipation claims that proactive gaze occurs only in the presence of biological motion, and that kinematic information is sufficient to determine the anticipation process. The results of the present study did not support the biological motion hypothesis of action anticipation. Specifically, proactive gaze was present during observation of both a biological accelerated-decelerated motion and a non-biological constant velocity motion (Experiment 1), in the presence of a barrier able to restrict differences between the two kinematics to the motion profile of individual markers prior to contact (Experiment 2), but only if an object was present at the end point of the movement trajectory (Experiment 3). Furthermore, proactive gaze was found independently of the presence of end effects temporally congruent with the instant in which the movement stopped (Experiments 4, and 5). We propose that the involvement of the observer's motor system is not restricted to when the agent moves with natural kinematics, and it is mandatory whenever the presence of an agent or a goal is evident, regardless of physical appearance, natural kinematics, and the possibility to identify the action behind the stimulus.
Keywords: Action anticipation; Biological motion perception; Eye movements; Motor resonance; Point-light-displays; Predictive eye movements.
Copyright © 2020 Elsevier B.V. All rights reserved.