Immersed Methods for Fluid-Structure Interaction
- PMID: 33012877
- PMCID: PMC7531444
- DOI: 10.1146/annurev-fluid-010719-060228
Immersed Methods for Fluid-Structure Interaction
Abstract
Fluid-structure interaction is ubiquitous in nature and occurs at all biological scales. Immersed methods provide mathematical and computational frameworks for modeling fluid-structure systems. These methods, which typically use an Eulerian description of the fluid and a Lagrangian description of the structure, can treat thin immersed boundaries and volumetric bodies, and they can model structures that are flexible or rigid or that move with prescribed deformational kinematics. Immersed formulations do not require body-fitted discretizations and thereby avoid the frequent grid regeneration that can otherwise be required for models involving large deformations and displacements. This article reviews immersed methods for both elastic structures and structures with prescribed kinematics. It considers formulations using integral operators to connect the Eulerian and Lagrangian frames and methods that directly apply jump conditions along fluid-structure interfaces. Benchmark problems demonstrate the effectiveness of these methods, and selected applications at Reynolds numbers up to approximately 20,000 highlight their impact in biological and biomedical modeling and simulation.
Keywords: applications in medicine and biology; fluid–structure interaction; immersed boundary method; immersed finite-element method; immersed interface method.
Figures
Similar articles
-
Hybrid finite difference/finite element immersed boundary method.Int J Numer Method Biomed Eng. 2017 Dec;33(12):e2888. doi: 10.1002/cnm.2888. Epub 2017 Aug 16. Int J Numer Method Biomed Eng. 2017. PMID: 28425587 Free PMC article.
-
On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.J Comput Phys. 2022 May 15;457:111042. doi: 10.1016/j.jcp.2022.111042. Epub 2022 Feb 9. J Comput Phys. 2022. PMID: 35300097 Free PMC article.
-
A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.J Comput Phys. 2023 Sep 1;488:112174. doi: 10.1016/j.jcp.2023.112174. Epub 2023 Apr 24. J Comput Phys. 2023. PMID: 37214277 Free PMC article.
-
A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.J Comput Phys. 2021 Oct 15;443:110442. doi: 10.1016/j.jcp.2021.110442. Epub 2021 May 18. J Comput Phys. 2021. PMID: 34149063 Free PMC article.
-
The relationship between viscoelasticity and elasticity.Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200419. doi: 10.1098/rspa.2020.0419. Epub 2020 Nov 18. Proc Math Phys Eng Sci. 2020. PMID: 33363441 Free PMC article. Review.
Cited by
-
A computational study of aortic reconstruction in single ventricle patients.Biomech Model Mechanobiol. 2023 Feb;22(1):357-377. doi: 10.1007/s10237-022-01650-w. Epub 2022 Nov 5. Biomech Model Mechanobiol. 2023. PMID: 36335184 Free PMC article.
-
A poroelastic immersed finite element framework for modelling cardiac perfusion and fluid-structure interaction.Int J Numer Method Biomed Eng. 2021 May;37(5):e3446. doi: 10.1002/cnm.3446. Epub 2021 Feb 28. Int J Numer Method Biomed Eng. 2021. PMID: 33559359 Free PMC article.
-
A Hybrid Semi-Lagrangian Cut Cell Method for Advection-Diffusion Problems with Robin Boundary Conditions in Moving Domains.J Comput Phys. 2022 Jan 15;449:110805. doi: 10.1016/j.jcp.2021.110805. Epub 2021 Oct 28. J Comput Phys. 2022. PMID: 34898720 Free PMC article.
-
The Impact of Residences and Roads on Wind Erosion in a Temperate Grassland Ecosystem: A Spatially Oriented Perspective.Int J Environ Res Public Health. 2022 Dec 23;20(1):198. doi: 10.3390/ijerph20010198. Int J Environ Res Public Health. 2022. PMID: 36612520 Free PMC article.
-
Eulerian simulation of complex suspensions and biolocomotion in three dimensions.Proc Natl Acad Sci U S A. 2022 Jan 4;119(1):e2105338118. doi: 10.1073/pnas.2105338118. Proc Natl Acad Sci U S A. 2022. PMID: 34969855 Free PMC article.
References
-
- Apte SV, Martin M, Patankar NA. 2009. A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows. J. Comput. Phys 228:2712–38
-
- Atzberger PJ, Kramer PR, Peskin CS. 2007. A stochastic immersed boundary method for fluid–structure dynamics at microscopic length scales. J. Comput. Phys 224:1255–92
-
- Balboa Usabiaga F, Bell JB, Delgado-Buscalioni R, Donev A, Fai T, et al. 2012. Staggered schemes for fluctuating hydrodynamics. Multiscale Model. Simul 10:1369–408
-
- Balboa Usabiaga F, Kallemov B, Delmotte B, Bhalla APS, Griffith BE, Donev A. 2016. Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach. Comm. Appl. Math. Comput. Sci 11:217–96
Grants and funding
LinkOut - more resources
Full Text Sources