Impact of Intravesical Cold Sensation on Functional Network Connectivity Estimated Using ICA at Rest & During Interoceptive Task

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul:2020:1722-1725. doi: 10.1109/EMBC44109.2020.9176391.

Abstract

Afferent nerves that carry interoceptive signals from the viscera to the brain include Aδ and C-fibers. Previously, we examined the effects of detrusor distention (conveyed mainly by Aδ fibers) on the static functional network connectivity (FNC) of the brain using independent component analysis (ICA) of fMRI time series. In the present study, we investigate the impact of intravesical cold sensation (thought to be conveyed by C-fibers) on brain FNC using similar ICA approach. Thirteen healthy women were scanned on a 3.0T MRI scanner during a resting state scan and an intravesical cold sensation task fMRI. High dimensional ICA (n = 75) were used to decompose the fMRI data into several intrinsic connectivity networks (ICNs) including the default-mode (DMN), subcortical (SCN; amygdala, thalamus), salience (SN), central executive (CEN), sensorimotor (SMN), and cerebellar/brainstem (CBN) networks. Results demonstrate significant FNC differences in several ICN pairs primarily between the SCN and cognitive networks such as CEN, as well as between SN and CBN and DMN when intravesical cold water condition was compared to rest (FDR-corrected p-value of 0.05). Significant increases in FNC between CBN and between SMN were also observed during interoceptive condition. The results indicate significant impact of Aδ and C-fiber-originated interoceptive signals on the brain connectivity when compared to the baseline rest.

MeSH terms

  • Brain / diagnostic imaging
  • Brain Mapping*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Nerve Net*
  • Sensation