Development and Evaluation of Machine Learning Models for Recovery Prediction after Treatment for Traumatic Brain Injury

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul:2020:2416-2420. doi: 10.1109/EMBC44109.2020.9175658.

Abstract

Traumatic brain injury (TBI) is a leading cause of death and disability yet treatment strategies remain elusive. Advances in machine learning present exciting opportunities for developing personalized medicine and informing laboratory research. However, their feasibility has yet to be widely assessed in animal research where data are typically limited or in the TBI field where each patient presents with a unique injury. The Operation Brain Trauma Therapy (OBTT) has amassed an animal dataset that spans multiple types of injury, treatment strategies, behavioral assessments, histological measures, and biomarker screenings. This paper aims to analyze these data using supervised learning techniques for the first time by partitioning the dataset into acute input metrics (i.e. 7 days post-injury) and a defined recovery outcome (i.e. memory retention). Preprocessing is then applied to transform the raw OBTT dataset, e.g. developing a class attribute by histogram binning, eliminating borderline cases, and applying principal component analysis (PCA). We find that these steps are also useful in establishing a treatment ranking; Minocycline, a therapy with no significant findings in the OBTT analyses, yields the highest percentage recovery in our ranking. Furthermore, of the seven classifiers we have evaluated, Naïve Bayes achieves the best performance (67%) and yields significant improvement over our baseline model on the preprocessed dataset with borderline elimination. We also investigate the effect of testing on individual treatment groups to evaluate which groups are difficult to classify, and note the interpretive qualities of our model that can be clinically relevant.Clinical Relevance- These studies establish methods for better analyzing multivariate functional recovery and understanding which measures affect prognosis following traumatic brain injury.

MeSH terms

  • Animals
  • Bayes Theorem
  • Brain
  • Brain Injuries, Traumatic* / therapy
  • Humans
  • Machine Learning
  • Precision Medicine