Cuffless Blood Pressure Estimation for Activities of Daily Living

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul:2020:4441-4445. doi: 10.1109/EMBC44109.2020.9175976.

Abstract

This work presents a modelling approach to predict the blood pressure (BP) waveform time series during activities of daily living without the use of a traditional pressure cuff. A nonlinear autoregressive model with exogenous inputs (NARX) is implemented using artificial neural networks and trained to predict the BP waveform time series from electrocardiography (ECG) and forehead photoplethysmography (PPG) input signals. To broaden the range of blood pressures present in the training set, a protocol was implemented that included sitting, standing, walking, Valsalva manoeuvers, and static handgrip exercise. A five-minute interval of data in the sitting position at the end of the day was also used for training. The efficacy of the cuffless BP method for continuous BP estimation over 4.67 hours was evaluated on 3 participants for varying training data segments. A mean absolute error of 6.3 and 5.2 mmHg were achieved for systolic BP and diastolic BP estimates, respectively. Including static handgrips and Valsalva manoeuvers in the training dataset leads to better estimation of the higher ranges of BP observed throughout the day. The proposed method shows potential for estimating the range of BP experienced during activities of daily living.Clinical Relevance- Establishes a method for cuffless continuous blood pressure estimation during activities of daily living that can be used for continuous monitoring and acute hypertension detection.

MeSH terms

  • Activities of Daily Living*
  • Blood Pressure
  • Blood Pressure Determination
  • Hand Strength*
  • Humans
  • Pulse Wave Analysis