Purpose: This study aimed to determine if LCHF and ketone ester (KE) supplementation can synergistically alter exercise metabolism and improve performance.
Methods: Elite race walkers (n = 18, 15 males and 3 females; V˙O2peak, 62 ± 6 mL·min-1·kg-1) undertook a four-stage exercise economy test and real-life 10,000-m race before and after a 5-d isoenergetic high-CHO (HCHO, ~60%-65% fat; CHO, 20% fat; n = 9) or LCHF (75%-80% fat, <50 g·d-1 CHO, n = 9) diet. The LCHF group performed additional economy tests before and after diet after supplementation with 573 mg·kg-1 body mass KE (HVMN; HVMN Inc., San Francisco, CA), which was also consumed for race 2.
Results: The oxygen cost of exercise (relative V˙O2, mL·min-1·kg-1) increased across all four stages after LCHF (P < 0.005). This occurred in association with increased fat oxidation rates, with a reciprocal decrease in CHO oxidation (P < 0.001). Substrate utilization in the HCHO group remained unaltered. The consumption of KE before the LCHF diet increased circulating KB (P < 0.05), peaking at 3.2 ± 0.6 mM, but did not alter V˙O2 or RER. LCHF diet elevated resting circulating KB (0.3 ± 0.1 vs 0.1 ± 0.1 mM), but concentrations after supplementation did not differ from the earlier ketone trial. Critically, race performance was impaired by ~6% (P < 0.0001) relative to baseline in the LCHF group but was unaltered in HCHO.
Conclusion: Despite elevating endogenous KB production, an LCHF diet does not augment the metabolic responses to KE supplementation and negatively affects race performance.
Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American College of Sports Medicine.