Using cardiac ionic cell models to interpret clinical data
- PMID: 33027553
- DOI: 10.1002/wsbm.1508
Using cardiac ionic cell models to interpret clinical data
Abstract
For over 100 years cardiac electrophysiology has been measured in the clinic. The electrical signals that can be measured span from noninvasive ECG and body surface potentials measurements through to detailed invasive measurements of local tissue electrophysiology. These electrophysiological measurements form a crucial component of patient diagnosis and monitoring; however, it remains challenging to quantitatively link changes in clinical electrophysiology measurements to biophysical cellular function. Multi-scale biophysical computational models represent one solution to this problem. These models provide a formal framework for linking cellular function through to emergent whole organ function and routine clinical diagnostic signals. In this review, we describe recent work on the use of computational models to interpret clinical electrophysiology signals. We review the simulation of human cardiac myocyte electrophysiology in the atria and the ventricles and how these models are being used to link organ scale function to patient disease mechanisms and therapy response in patients receiving implanted defibrillators, \cardiac resynchronisation therapy or suffering from atrial fibrillation and ventricular tachycardia. There is a growing use of multi-scale biophysical models to interpret clinical data. This allows cardiologists to link clinical observations with cellular mechanisms to better understand cardiopathophysiology and identify novel treatment strategies. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Cardiovascular Diseases > Molecular and Cellular Physiology.
Keywords: cardiac; electrophysiology; multi-scale.
© 2020 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals LLC.
Similar articles
-
Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block.Elife. 2019 Dec 24;8:e48890. doi: 10.7554/eLife.48890. Elife. 2019. PMID: 31868580 Free PMC article.
-
Computational models of atrial cellular electrophysiology and calcium handling, and their role in atrial fibrillation.J Physiol. 2016 Feb 1;594(3):537-53. doi: 10.1113/JP271404. Epub 2015 Dec 28. J Physiol. 2016. PMID: 26582329 Free PMC article. Review.
-
Acute effects of alcohol on cardiac electrophysiology and arrhythmogenesis: Insights from multiscale in silico analyses.J Mol Cell Cardiol. 2020 Sep;146:69-83. doi: 10.1016/j.yjmcc.2020.07.007. Epub 2020 Jul 22. J Mol Cell Cardiol. 2020. PMID: 32710981
-
Developing a novel comprehensive framework for the investigation of cellular and whole heart electrophysiology in the in situ human heart: historical perspectives, current progress and future prospects.Prog Biophys Mol Biol. 2014 Aug;115(2-3):252-60. doi: 10.1016/j.pbiomolbio.2014.06.004. Epub 2014 Jun 24. Prog Biophys Mol Biol. 2014. PMID: 24972083 Review.
-
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28. Physiol Rev. 2024. PMID: 38153307 Free PMC article. Review.
Cited by
-
Computational models of atrial fibrillation: achievements, challenges, and perspectives for improving clinical care.Cardiovasc Res. 2021 Jun 16;117(7):1682-1699. doi: 10.1093/cvr/cvab138. Cardiovasc Res. 2021. PMID: 33890620 Free PMC article. Review.
-
A Review of Personalised Cardiac Computational Modelling Using Electroanatomical Mapping Data.Arrhythm Electrophysiol Rev. 2024 May 20;13:e08. doi: 10.15420/aer.2023.25. eCollection 2024. Arrhythm Electrophysiol Rev. 2024. PMID: 38807744 Free PMC article. Review.
-
Neural network emulation of the human ventricular cardiomyocyte action potential for more efficient computations in pharmacological studies.Elife. 2024 Apr 10;12:RP91911. doi: 10.7554/eLife.91911. Elife. 2024. PMID: 38598284 Free PMC article.
-
The role of computational methods in cardiovascular medicine: a narrative review.Transl Pediatr. 2024 Jan 29;13(1):146-163. doi: 10.21037/tp-23-184. Epub 2024 Jan 24. Transl Pediatr. 2024. PMID: 38323181 Free PMC article. Review.
-
Computational Medicine: What Electrophysiologists Should Know to Stay Ahead of the Curve.Curr Cardiol Rep. 2024 Dec;26(12):1393-1403. doi: 10.1007/s11886-024-02136-0. Epub 2024 Sep 20. Curr Cardiol Rep. 2024. PMID: 39302590 Review.
References
REFERENCES
-
- Aguado-Sierra, J., Krishnamurthy, A., Villongco, C., Chuang, J., Howard, E., Gonzales, M. J., … McCulloch, A. D. (2011). Patient-specific modeling of dyssynchronous heart failure: A case study. Progress in Biophysics and Molecular Biology, 107(1), 147-155.
-
- Aguilar, M., Feng, J., Vigmond, E., Comtois, P., & Nattel, S. (2017). Rate-dependent role of IKur in human atrial repolarization and atrial fibrillation maintenance. Biophysical Journal, 112(9), 1997-2010.
-
- Aiba, T., & Tomaselli, G. (2012). Electrical remodeling in dyssynchrony and resynchronization. Journal of Cardiovascular Translational Research, 5(2), 170-179.
-
- Ali, R. L., Hakim, J. B., Boyle, P. M., Zahid, S., Sivasambu, B., Marine, J. E., … Spragg, D. D. (2019). Arrhythmogenic propensity of the fibrotic substrate after atrial fibrillation ablation: A longitudinal study using magnetic resonance imaging-based atrial models. Cardiovascular Research, 115(12), 1757-1765.
-
- Arevalo, H., Plank, G., Helm, P., Halperin, H., & Trayanova, N. (2013). Tachycardia in post-infarction hearts: Insights from 3D image-based ventricular models. PLoS One, 8(7), e68872.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
