Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec:201:108281.
doi: 10.1016/j.exer.2020.108281. Epub 2020 Oct 6.

Overexpression of S100A4 protects retinal ganglion cells against retinal ischemia-reperfusion injury in mice

Affiliations

Overexpression of S100A4 protects retinal ganglion cells against retinal ischemia-reperfusion injury in mice

Jiayi Yang et al. Exp Eye Res. 2020 Dec.

Abstract

Background: Glaucoma is characterized by the neurodegeneration of retinal ganglion cells (RGCs) and the optic nerve. Numerous studies have reported that S100A4 participates in the metastasis of tumor cells and nerve protection. This study was intended to explore the role of S100A4 on RGCs under retinal ischemia-reperfusion (I/R) injury in mice.

Methods: C57BL/6J mice were used to induce retinal I/R injury. The intravitreal administration of rAAV-EF1α-s100a4-EGFP-WPRE (rAAV-S100A4) or rAAV-EF1α-EGFP-WPRE-Pa was performed 4 weeks before I/R injury. Expression of S100A4 was detected by quantitative real-time PCR, immunofluorescence staining of retinal sections and western blot. Surviving RGCs were quantified using immunofluorescence staining. Staining of TUNEL was utilized to evaluate the apoptosis of retinal cells. Electroretinogram (ERG) was used to analyze retinal function. Expression of Akt, phospho-Akt, Bcl-2, and Bax were determined using western blotting to investigate the potential mechanisms of S100A4.

Results: Retinal S100A4 level had no statistical difference 7 days after I/R injury. The rAAV-S100A4 was clearly demonstrated by the green fluorescence protein in many layers of the retina after intravitreal injection and up-regulated the expression of S100A4. I/R injury resulted in an increase of the apoptosis of retinal cells and the reduction of surviving RGCs, however, overexpressed S100A4 inhibited the apoptosis of cells and a decrease of RGCs. ERG analysis showed a drop on amplitude of a-wave and b-wave was impeded to some extent by overexpressing of S100A4. Up-regulation of S100A4 raised the expression of phospho-Akt and reduced Bax expression. Nevertheless, there were no significant changes in the levels of Bcl-2 and total Akt.

Conclusion: Our results indicate the neuroprotective effects of overexpressed S100A4 on RGCs by activating the Akt pathway and then inhibiting the apoptosis of cells after I/R injury. The use of S100A4 protein may be a novel therapeutic strategy for glaucoma.

Keywords: Ischemia-reperfusion; Neuroprotection; Retinal ganglion cells; S100A4.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms