Clinical successes have been achieved with checkpoint blockade therapy, which facilitates the function of T cells recognizing tumor-specific mutations known as neoepitopes. It is a reasonable hypothesis that therapeutic cancer vaccines targeting neoepitopes uniquely expressed by a patient's tumor would prove to be an effective therapeutic strategy. With the advent of high-throughput next generation sequencing, it is now possible to rapidly identify these tumor-specific mutations and produce therapeutic vaccines targeting these patient-specific neoepitopes. However, initial reports suggest that when used as a monotherapy, neoepitope-targeted vaccines are not always sufficient to induce clinical responses in some patients. Therefore, research has now turned to investigating neoepitope vaccines in combination with other cancer therapies, both immune and non-immune, to improve their clinical efficacies.
Keywords: Checkpoint blockade; Combination therapy; Epitope spreading; Neoepitope vaccine.