Sheared Amorphous Packings Display Two Separate Particle Transport Mechanisms

Phys Rev Lett. 2020 Sep 25;125(13):138001. doi: 10.1103/PhysRevLett.125.138001.

Abstract

Shearing granular materials induces nonaffine displacements. Such nonaffine displacements have been studied extensively, and are known to correlate with plasticity and other mechanical features of amorphous packings. A well known example is shear transformation zones as captured by the local deviation from affine deformation, D_{min}^{2}, and their relevance to failure and stress fluctuations. We analyze sheared frictional athermal disc packings and show that there exists at least one additional mesoscopic transport mechanism that superimposes itself on top of local diffusive motion. We evidence this second transport mechanism in a homogeneous system via a diffusion tensor analysis and show that the trace of the diffusion tensor equals the classic D_{min}^{2} when this second mesoscopic transport is corrected for. The new transport mechanism is consistently observed over a wide range of volume fractions and even for particles with different friction coefficients and is consistently observed also upon shear reversal, hinting at its relevance for memory effects.