Hippocampal activity represents many behaviorally important variables, including context, an animal's location within a given environmental context, time, and reward. Using longitudinal calcium imaging in mice, multiple large virtual environments, and differing reward contingencies, we derived a unified probabilistic model of CA1 representations centered on a single feature-the field propensity. Each cell's propensity governs how many place fields it has per unit space, predicts its reward-related activity, and is preserved across distinct environments and over months. Propensity is broadly distributed-with many low, and some very high, propensity cells-and thus strongly shapes hippocampal representations. This results in a range of spatial codes, from sparse to dense. Propensity varied ∼10-fold between adjacent cells in salt-and-pepper fashion, indicating substantial functional differences within a presumed cell type. Intracellular recordings linked propensity to cell excitability. The stability of each cell's propensity across conditions suggests this fundamental property has anatomical, transcriptional, and/or developmental origins.
Keywords: calcium imaging; excitability; gain modulation; hippocampus; intracellular recording; memory; place cell; place field; propensity; sparse coding.
Copyright © 2020 Elsevier Inc. All rights reserved.